• 00989129170295
  • Instrumental Street, Electronical Blvd,Sixth Fleet, Large Industrial Town, Shiraz, Iran
  • Producer of fiberglass products
  • Certificate
  • ISO 9001: 2010
  • Appreciation letter
  • Best engineering unit in 2017

Matin Technical Design Co:Manufacturer of Composite Manhole Covers, Composite Tanks and Septic Tanks

Matin Technical design company is Manufacturer, designer, exporter of Storage Tanks , water tanks, Composite Tanks, GRP Tanks, SMC Panel Tanks , septic tanks, composite covers, composite manhole covers, composite fittings and other composite products.

Matin Technical Design Co:Manufacturer of Composite Manhole Covers, Composite Tanks and Septic Tanks

Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Funeral Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Funeral Septic Tanks, Cubic Septic Tank, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,.. in Iran and Middle-East

Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,.. in Iran and Middle-East

 

 

Polymer products, especialy composites, since entering the industry, with exclusive benefits such as : light weight, long shelf life, easy and quick transportation and installation, high resistance to corrosions and environmental sustainability,have great impact on reducing costs and increasing productivity and compete with steel and concrete products in similar applications have been overcome most of its competitors and remove them from industrial scene.

In this regard, Matin Technical Design Company stablished in 2007 in IRan, as a desinger, producer and excecutor of different type of Storage tanks, water storage tanks, cylindrical pressure and atmosphoric vessels(GRP), Square modular tanks, Cubic modular tanks (CMC), Sheet Moulding Compound (SMC tank), unerground and Underground buried tanks (fiberglass septic tanks, sewge tanks and fat retention tanks), FRP composite fittings and composite manhole cover (SMC or GRP).

About other activities in Matin company we can point to offering industrial solutions for different problems, especially dealing with industrial corrosion based on operational process using nanocomposite that we can offer solution using Nano Composite Compound. Also, the mission of company is to develop and replace old products with composite industry and being a developer of this industry.

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

 

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

 

Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Funeral Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Funeral Septic Tanks, Cubic Septic Tank, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,.. in Iran and Middle-East,Septic tank,Manhole cover,Composite manhole cover,GRP tank,Polyethylene tank, SMC tank, Cubic modular tank, GRP fitting, PVDF fitting, PTFE tank, PTFE fitting, GRP Manhole, Manhole, GRP lining, Composite, Composite tank, Storage tank, Water tank, Composite fitting, GRVE lining, Polymer lining, Polyethylene pipe, GRP pipe, HTPE tank, PE tank, MatinFRP, Matin, Matin technical design co"

About composite

Composites are two or more materials with markedly different physical or chemical properties combined in a way that they act in concert, yet remain separate and distinct at some levels because they don’t fully merge or dissolve into one another.

 

Not all plastics are Composites. In fact, the majority of plastics today are pure plastic, like toys and soda bottles. When additional strength needed, many types of plastics can be reinforced (usually with reinforcing fibers). This combination of plastic and reinforcement can produce some of the strongest materials for their weight that technology has ever developed and the most versatile.

 

Therefore, Composites, also referred to as fiber-reinforced polymer (FRPComposites is a combination of a

 

 

such that there is a sufficient aspect ratio (length to thickness) to provide a discernable reinforcing function in one or more directions. FRP Composite may also contain:

 

  • fillers
  • additives
  • core materials

 

that modify and enhance the final product. The constituent elements in a Composite retain their identities (they don't dissolve and merge completely into each other) while acting in concert to provide a host of benefits such as:

 

  • Lightweight
  • High strength
  • Corrosion resistant
  • High strength to weight ratio
  • Directional strength  / tailor mechanical properties
  • High impact strength
  • High electric strength (insulator)
  • Radar transparent
  • Non magnetic
  • Low maintenance
  • Long term durability
  • Parts consolidation
  • Dimensional stability
  • Small to large part geometry – styling-design – sculptural form
  • Customized surface finish
  • Rapid installation

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Cubic Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

How to Order and Buy
To know about Prices

Contact Us
+987138220038
+987138420038
Telegram
Info Email
Sales Email

Benefits of composites

LIGHT WEIGHT

 

Composites compared to most woods and metalsare are light in weight. Their lightness is important in automobiles and aircraft, for example, where less weight means better fuel efficiency (more miles to the gallon). People who design airplanes are greatly concerned with weight, since reducing a craft’s weight reduces the amount of fuel it needs and increases the speeds it can reach. Some modern airplanes are built with more Composites than metal including the new Boeing 787, Dreamliner.

 

HIGH STRENGTH

 

Composites can be designed to be far stronger than aluminum or steel. Metals are equally strong in all directions. But Composites can be engineered and designed to be strong in a specific direction.

 

STRENGTH RELATED TO WEIGHT

 

Strength-to-weight ratio is a material’s strength in relation to how much it weighs. Some materials are very strong and heavy, such as steel. Other materials can be strong and light, such as bamboo poles. Composite materials can be designed to be both strong and light. This property is why Composites are used to build airplanes — which need a very high strength material at the lowest possible weight. A Composite can be made to resist bending in one direction, for example. When something is built with metal, and greater strength is needed in one direction, the material usually must be made thicker, which adds weight. Composites can be strong without being heavy. Composites have the highest strength-to-weight ratios in structures today.

 

CORROSION RESISTANCE

 

Composites resist damage from the weather and from harsh chemicals that can eat away at other materials. Composites are good choices where chemicals are handled or stored. Outdoors, they stand up to severe weather and wide changes in temperature.

 

HIGH-IMPACT STRENGTH

 

Composites can be made to absorb impacts the sudden force of a bullet, for instance, or the blast from an explosion. Because of this property, Composites are used in bulletproof vests and panels and to shield airplanes, buildings, and military vehicles from explosions.

 

DESIGN FLEXIBILITY

 

Composites can be molded into complicated shapes more easily than most other materials. This gives designers the freedom to create almost any shape or form. Most recreational boats today, for example, are built from fiberglass Composites because these materials can easily be molded into complex shapes, which improve boat design while lowering costs. The surface of Composites can also be molded to mimic any surface finish or texture, from smooth to pebbly.

 

PART CONSOLIDATION

 

A single piece made of Composite materials can replace an entire assembly of metal parts. Reducing the number of parts in a machine or a structure saves time and cuts down on the maintenance needed over the life of the item.

 

DIMENSIONAL STABILITY

 

Composites retain their shape and size when they are hot or cool, wet or dry. Wood, on the other hand, swells and shrinks as the humidity changes. Composites can be a better choice in situations demanding tight fits that do not vary. They are used in aircraft wings, for example, so that the wing shape and size do not change as the plane gains or loses altitude.

 

NONCONDUCTIVE

 

Composites are nonconductive, meaning they do not conduct electricity. This property makes them suitable for such items as electrical utility poles and the circuit boards in electronics. If electrical conductivity is needed, it is possible to make some Composites conductive.

 

NONMAGNETIC

 

Composites contain no metals; therefore, they are not magnetic. They can be used around sensitive electronic equipment. The lack of magnetic interference allows large magnets used in MRI (magnetic resonance imaging) equipment to perform better. Composites are used in both the equipment housing and table. In addition, the construction of the room uses Composites rebar to reinforced the concrete walls and floors in the hospital.

 

RADAR TRANSPARENT

 

Radar signals pass right through Composites, a property that makes Composites ideal materials for use anywhere radar equipment is operating, whether on the ground or in the air. Composites play a key role in stealth aircraft, such as the U.S. Air Force’s B-2 stealth bomber, which is nearly invisible to radar.

 

LOW THERMAL CONDUCTIVITY

 

Composites are good insulators—they do not easily conduct heat or cold. They are used in buildings for doors, panels, and windows where extra protection is needed from severe weather.

 

DURABLE

 

Structures made of Composites have a long life and need little maintenance. We do not know how long composites last, because we have not come to the end of the life of many original Composites. Many Composites have been in service for half a century.

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

 

What are composites?

Composites are two or more materials with markedly different physical or chemical properties combined in a way that they act in concert, yet remain separate and distinct at some levels because they don’t fully merge or dissolve into one another.

 

Not all plastics are Composites. In fact, the majority of plastics today are pure plastic, like toys and soda bottles. When additional strength needed, many types of plastics can be reinforced (usually with reinforcing fibers). This combination of plastic and reinforcement can produce some of the strongest materials for their weight that technology has ever developed and the most versatile.

 

Therefore, Composites, also referred to as fiber-reinforced polymer (FRPComposites is a combination of a

 

 

such that there is a sufficient aspect ratio (length to thickness) to provide a discernable reinforcing function in one or more directions. FRP composite may also contain:

 

  • fillers
  • additives
  • core materials

 

that modify and enhance the final product. The constituent elements in a Composite retain their identities (they don't dissolve and merge completely into each other) while acting in concert to provide a host of benefits such as:

 

  • Lightweight
  • High strength
  • Corrosion resistant
  • High strength to weight ratio
  • Directional strength  / tailor mechanical properties
  • High impact strength
  • High electric strength (insulator)
  • Radar transparent
  • Non magnetic
  • Low maintenance
  • Long term durability
  • Parts consolidation
  • Dimensional stability
  • Small to large part geometry – styling-design – sculptural form
  • Customized surface finish
  • Rapid installation

 

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Cubic Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

History of the composites industry

The use of natural composite materials has been a part of man's technology since the first ancient builder used straw to reinforce mud bricks.

 

The 12th century Mongols made the advanced weapons of their day with archery bows that were smaller and more powerful than their rivals. These bows were Composites structures made by combining cattle tendons, horn, bamboo and silk which bonded with natural pine resin. The tendons were placed on the tension side of the bow, the bamboo was used as a core and sheets of horn were laminated to the compression side of the bow. The entire structure was tightly wrapped with silk using the rosin adhesive. These 12th century weapons designers certainly understood the principles of Composite design. In recent times some of these 700 year old museum pieces were strung and tested. They were about 80% as strong as modern Composite bows.

 

In the late 1800s canoe builders were experimenting with gluing together layers of kraft paper with shellac to form paper laminates. While the concept was successful, the materials did not perform well. Because the available materials were not up to the job, the idea faded.

 

In the years between 1870 and 1890, a revolution was occurring in chemistry. The first synthetic (man-made) resins were developed which could be converted from a liquid to a solid by polymerization. These Polymer resins are transformed from the liquid state to the solid state by crosslinking the molecules. Early synthetic resins included celluloid, melamine and Bakelite.

 

Composites are no longer considered "space-age" materials utilized only for stealth bombers and space shuttles. This versatile material system has become a part of everyday life. In fact, Composites are so widely used and in such varied of applications, the overall Composites market had to be divided in the following major commercial segments to cover its thousands of products.

 

Aircraft/Military

Commercial, pleasure and military aircrafts, including components for aerospace and related applications

 

Appliance/Business

Composite applications for the household and office including appliances, power tools, business equipment, etc.

 

Automotive/Transportation

The largest of the markets, products include parts for automobiles, trucks, rail and farm applications.

 

Civil Infrastructure

A relatively new market for Composites, these applications include the repair and replacement of civil infrastructure including buildings, roadsblockquote bridges, piling, etc.

 

Construction

Includes materials for the building of homes, offices, and architectural components. Products include swimming pools, bathroom fixtures, wall panels, roofingblockquote architectural cladding

 

Consumer

Products include sports and recreational equipment such as golf clubs, tennis rackets, snowmobiles, mobile campers, furniture, microwave cookware

 

Corrosion-Resistant Equipment

Products for chemical-resistant service such as tanks, ducts and hoods, pumps, fans, grating, chemical processing, pulp & paper, oil & amblockquote; gas, and water/wastewater treatment markets

 

Electrical

This encompassing market includes components for both electrical and electronic applications such as pole line hardware, substation equipment, microwavblockquote antennas, printed wiring boards, etc.

 

Marine

Products for commercial, pleasure and naval boats and ships.

 


 

 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Cubic Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

MTD 100 : Composite Manhole Cover

 

MTD 100

Composite manhole covers, 60cm diameters, with simple SMC frame

 

Septic tank, Manhole cover, Composite manhole cover, GRP tank, Polyethylene tank, SMC tank, Cubic modular tank, GRP Manhole, Manhole, Composite, Composite tank, Storage tank, Water tank, Matin, Matin technical design company

MTD 100

Very Light Duty

Light Duty

Medium Duty

Heavy Duty

Type:

15Kn

125Kn

250Kn

400Kn

Load:

A15

B125

C250

D400

Class:

19.6

19.6

18.8

18.8

Cover Weight(kg):

9

9

9

9

Frame Weight(kg):

60

60

60

60

Cover Diameter(cm):

60

60

60

60

Internal Frame Diameter(cm):

54

54

54

54

Clear Opening(cm):

3.4

3.4

3.4

3.4

Cover Thickness(cm):

5.7

5.7

5.7

5.7

Frame Thickness(cm):

 

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Cubic Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Cubic GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Cubic Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester


 

MTD 101 : Composite Manhole Cover

 

MTD 101

Composite manhole covers, 60cm diameters, with squared 76*76 SMC frame

Septic tank, Manhole cover, Composite manhole cover, GRP tank, Polyethylene tank, SMC tank, Cubic modular tank, GRP Manhole, Manhole, Composite, Composite tank, Storage tank, Water tank, Matin, Matin technical design company

MTD 101

Very Light Duty

Light Duty

Medium Duty

Heavy Duty

Type:

15Kn

125Kn

250Kn

400Kn

Load:

A15

B125

C250

D400

Class:

19.6

19.6

18.8

18.8

Cover weight(kg):

13.3

13.3

13.3

13.3

Frame Weight(kg):

60

60

60

60

Cover Diameter(cm):

76*76

76*76

76*76

76*76

External Frame Dimension(cm):

60

60

60

60

Internal Frame Diameter(cm):

54

54

54

54

Clear Opening(cm):

3.4

3.4

3.4

3.4

Cover Thickness(cm):

5.5

5.5

5.5

5.5

Frame Thickness(cm):

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Cubic Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Cubic GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Cubic Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

MTD 102 : Composite Manhole Cover

 

MTD 102

Composite manhole covers, 60cm diameters, with grid SMC frame

Septic tank, Manhole cover, Composite manhole cover, GRP tank, Polyethylene tank, SMC tank, Cubic modular tank, GRP Manhole, Manhole, Composite, Composite tank, Storage tank, Water tank, Matin, Matin technical design company

MTD 102

Very Light Duty

Light Duty

Medium Duty

Heavy Duty

Type:

15Kn

125Kn

250Kn

400Kn

Load:

A15

B125

C250

D400

Class:

19.6

19.6

18.8

18.8

Cover Weight(Kg):

21.5

21.5

21.5

21.5

Frame Weight(Kg):

60

60

60

60

Cover Diameter(cm):

82.5

82.5

82.5

82.5

External Frame Diameter(cm):

60

60

60

60

Internal frame Diameter(cm):

54

54

54

54

Clear Opening(cm):

3.4

3.4

3.4

3.4

Cover Thickness(cm):

9

9

9

9

Frame thickness(cm):

 

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Cubic Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Cubic GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Cubic Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

MTD 800 : Composite Manhole Cover

 

MTD 800

Composite manhole covers, 80cm diameters, with grid SMC frame

Septic tank, Manhole cover, Composite manhole cover, GRP tank, Polyethylene tank, SMC tank, Cubic modular tank, GRP Manhole, Manhole, Composite, Composite tank, Storage tank, Water tank, Matin, Matin technical design company

 

 

MTD 800

Very Light Duty

Light Duty

Medium Duty

Heavy Duty

Type:

15Kn

125Kn

250Kn

400Kn

Load(UP TO):

A15

B125

C250

D400

Class:

47

47

47

47

Cover Weight(Kg):

47

47

47

47

Frame Weight(Kg):

80

80

80

80

Cover Diameter(cm):

80.5

80.5

80.5

80.5

Internal Frame Diameter(cm):

71 71 71 71  Clear Opening(cm)

7

7

7

7

Cover Thickness(cm):

9

9

9

9

Frame thickness(cm):

 

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Cubic Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Cubic GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Cubic Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

MTD 104 : Composite Manhole Cover

 

MTD 104

SMC Composite manhole covers, 65cm diameters 

Septic tank, Manhole cover, Composite manhole cover, GRP tank, Polyethylene tank, SMC tank, Cubic modular tank, GRP Manhole, Manhole, Composite, Composite tank, Storage tank, Water tank, Matin, Matin technical design company

MTD 104

Very Light Duty

Light Duty

Medium Duty

Heavy Duty

Type:

15Kn

125Kn

250Kn

400Kn

Load:

A15

B125

C250

D400

Class:

22.5

22.5

22.5

22.5

Cover Weight(Kg):

64.5

64.5

64.5

64.5

Cover Diameter(cm):

4.3

4.3

4.3

4.3

Cover Thickness(cm):

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Cubic Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Cubic GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Cubic Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

 

MTD 325 : Composite Manhole Cover

 

MTD 105

Composite manhole covers, 32.5cm diameters, with SMC frame

Septic tank, Manhole cover, Composite manhole cover, GRP tank, Polyethylene tank, SMC tank, Cubic modular tank, GRP Manhole, Manhole, Composite, Composite tank, Storage tank, Water tank, Matin, Matin technical design company
 

MAD RM 105

Very Light Duty

Light Duty

Medium Duty

Heavy Duty

Type:

15Kn

125Kn

250Kn

400Kn

Load:

A15

B125

C250

D400

Class:

4.2

4.2

4.2

4.2

Cover Weight(Kg):

14

14

14

14

Frame Weight(Kg):

32.5

32.5

32.5

32.5

Cover Diameter(cm):

42

42

42

42

External Frame Diameter(cm):

24

24

24

24

Internal frame Diameter(cm):

4.3

4.3

4.3

4.3

Frame Thickness(cm):

3

3

3

3

Cover Thickness(cm):

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Cubic Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Cubic GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Cubic Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

MTD 4040 : Composite Manhole Cover

 


MTD 4040

Composite manhole covers, 40*40cm diameters, with SMC frame

  

Septic tank, Manhole cover, Composite manhole cover, GRP tank, Polyethylene tank, SMC tank, Cubic modular tank, GRP Manhole, Manhole, Composite, Composite tank, Storage tank, Water tank, Matin, Matin technical design company

 

 

MTD 400

Very Light Duty

Light Duty

Medium Duty

Heavy Duty

Type:

15Kn

125Kn

250Kn

400Kn

Load:

A15

B125

C250

D400

Class:

6.45

6.45

6.45

6.45

Cover Weight(Kg):

7.15

7.15

7.15

7.15

Frame Weight(Kg):

40*40

40*40

40*40

40*40

Cover Dimension(cm):

49*49

49*49

49*49

49*49

External Frame Diameter(cm):

40.2*40.2

40.2*40.2

40.2*40.2

40.2*40.2

Internal frame Diameter(cm):

3.4

3.4

3.4

3.4

Cover Thickness(cm):

6.5

6.5

6.5

6.5

Frame Thickness(cm):

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Cubic Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Cubic GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Cubic Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

 

MTD 265: Composite Manhole Cover

MTD 265

Composite manhole covers, 26.5cm diameters

 

Septic tank, Manhole cover, Composite manhole cover, GRP tank, Polyethylene tank, SMC tank, Cubic modular tank, GRP Manhole, Manhole, Composite, Composite tank, Storage tank, Water tank, Matin, Matin technical design company

 

MTD 265

Very Light Duty

Light Duty

Medium Duty

Heavy Duty

Type:

15Kn

125Kn

250Kn

400Kn

Load(UP TO):

A15

B125

C250

D400

Class:

3.05

3.05

3.05

3.05

Cover Weight(Kg):

3.6

3.6

3.6

3.6

Frame Weight(Kg):

26.5

26.5

26.5

26.5

Cover Diameter(cm):

27

27

27

27

Internal Frame Diameter(cm):

22 22 22 22 Clear Opening(cm)

30

30

30

30

Cover Thickness(cm):

48

48

48

48

Frame thickness(cm):

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Cubic Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Cubic GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Cubic Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

MTD 3683: Composite Manhole Cover

 

MTD 3683

Composite SMC manhole covers with 360*830mm 

Septic tank, Manhole cover, Composite manhole cover, GRP tank, Polyethylene tank, SMC tank, Cubic modular tank, GRP Manhole, Manhole, Composite, Composite tank, Storage tank, Water tank, Matin, Matin technical design company

 

MTD 3683

Very Light Duty

Light Duty

Medium Duty

Heavy Duty

Type:

15Kn

125Kn

250Kn

400Kn

Load:

A15

B125

C250

D400

Class:

6.45

6.45

6.45

6.45

Cover Weight(Kg):

7.15

7.15

7.15

7.15

Frame Weight(Kg):

360*830

360*830

360*830

360*830

Cover Diameter(cm):

950*840

950*840

950*840

950*840

External Frame Diameter(cm):

832*362

832*362

832*362

832*362

Internal frame Diameter(cm):

52

52

52

52

Cover Thickness(cm):

85

85

85

85

Frame thickness(cm):

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Cubic Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Cubic GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Cubic Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

MTD 100100: Composite Manhole Cover

 

MTD 100100

Composite SMC manhole covers with 1000*1000mm 

 

 

MTD 100100

Very Light Duty

Light Duty

Medium Duty

Heavy Duty

Type:

15Kn

125Kn

250Kn

400Kn

Load:

A15

B125

C250

D400

Class:

72.3

72.3

72.3

72.3

Cover Weight(Kg):

70

70

70

70

Frame Weight(Kg):

1000*1000

1000*1000

1000*1000

1000*1000

Cover Diameter(cm):

1330*1330

1330*1330

1330*1330

1330*1330

External Frame Diameter(cm):

1005*1005

1005*1005

1005*1005

1005*1005

Internal frame Diameter(cm):

60

60

60

60

Cover Thickness(cm):

80

80

80

80

Frame thickness(cm):

 

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Cubic Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Cubic GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Cubic Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

Manhole

Why are manholes called manholes?

 

The term "manhole" comes from the simple idea of how the hole was used--by men who entered the hole to locate the tunneled area beneath the ground. A manhole may also be called an access chamber, utility hole, maintenance hole or inspection chamber.

 

 

 

A manhole (alternatively utility hole, cable chamber, maintenance hole, inspection chamber, access chamber, sewer hole, smellhole, flabhole, ding-dong or confined space) is the top opening to an underground utility vault used to house an access point for making connections, inspection, valve adjustments or performing maintenance on underground and buried public utility and other services including sewers, telephone, electricity, storm drains, district heating and gas.

 

What is Manhole ?

Manholes are masonry or RCC chambers constructed at suitable intervals along the sewer lines for providing access into them.

Purposes of Manhole

  1. They are used to carry out inspection, cleaning and removing obstruction in the sewer line. 
  2. Manhole allows joining of sewers or changing the direction of sewer or alignment of sewer or both.
  3. They allow the escape of considerable gases through perforated cover and thus help in ventilation of sewage.
  4. They facilitate the laying of sewer line in convenient lengths.

Location of Manhole

  1. Manhole is provided when
  2. There is change in grade of sewer
  3. There is change in alignment
  4. There is change in size of sewer
  5. At junction of two or more sewers
  6. Manhole is also provided in straight alignment of sewers at regular intervals depending upon the diameters of sewers. It ranges from 90m to 150m (300' – 500') e.g. 75m for 60cmф, 120m for 90cmф and 150m for 120cmф.

Types of Manhole

Depending upon the depth the manhole can be classified as;

1. Shallow manhole

It is provided at shallow depth of 75-90cm (2'-3'). It is provided at the beginning of branch sewer or at a place not subjected to heavy traffic. It is provided with a light cover at its top it is also called inspection chamber.

 

2. Normal Manhole

 

It is provided in sewer line at depth of 150cm with a heavy cover on its top. It is generally of square shape (or rectangular shape).

 

3. Deep Manhole

 

They are provided at depth greater than 150cm with heavy cover at the top. The size is gradually increased and a facility for going down is provided.

 

 

 


 

 

 

Usages of Manhole

 

 

 

Manhole closings are protected by a manhole cover, a flat plug designed to prevent accidental or unauthorized access to the manhole. Those plugs are traditionally made of metal, but may be constructed from precast concrete, glass reinforced plastic or other composite material (especially in Europe, or where cover theft is of concern).

 

 

 

Manholes are usually outfitted with metal, polypropylene, or fiberglass steps installed in the inner side of the wall to allow easy descent into the utility space. Because of legislation restricting acceptable manual handling weights, Europe has seen a move toward lighter weight composite manhole cover materials, which also have the benefits of greater slip resistance and electrical insulating properties.

 

 

 

The access openings are usually circular in shape to prevent accidental fall of the cover into the hole.

 

 

 

Manholes are generally found in urban areas, in streets and occasionally under sidewalks. In rural and undeveloped areas, services such as telephone and electricity are usually carried on utility poles or even pylons rather than underground.

 

 

 

Composite manholes

 

 

 

Composite (fiberglass) manholes are commonly used in applications where infiltration, exfiltration, or corrosion by hydrogen sulfide (from sewer gas) are a concern, or where structures need to be factory integrated into a manhole before placement.

 

 

 

Structures commonly integrated into composite manholes include:

 

 

 

  • Flow inverts
  • Flumes
  • Drop structures from higher elevation flows to lower elevation discharge pipes

 

 

 

Occasionally, composite manholes will integrate:

 

 

 

  • Weirs
  • Storm water screening structures
  • Sewage grinders
  • Energy absorbing structures to dissipate undesirable flow stream turbulence or velocity

 

 

 

Hazards caused by stray voltage in manholes

 

 

 

In urban areas, stray voltage issues have become a significant concern for utilities. In 2004, Jodie S. Lane was electrocuted after stepping on a metal manhole cover, while walking her dog in New York City.

 

 

 

 

 

 

 

Source: wikipedia.org

 

 

Why are manhole covers round?

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Cubic Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole, composite manhole


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Cubic GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Cubic Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

 


Composite Manhole Covers

Manhole cover

From Wikipedia, the free encyclopedia


 

A manhole cover is a removable plate forming the lid over the opening of a manhole, to prevent anyone or anything from falling in, and to keep out unauthorized persons and material.

Manhole covers date back at least to the era of ancient Rome, which had sewer grates made from stone.

Description

Manhole covers are often made out of cast iron, concrete or a combination of the two. This makes them inexpensive, strong, and heavy, usually weighing more than 50 kilograms (110 lb). The weight helps to keep them in place when traffic passes over them, and makes it difficult for unauthorised people not having suitable tools to remove them.

Manhole covers may also be constructed from glass-reinforced plastic or other composite material (especially in Europe, or where cover theft is of concern). Because of legislation restricting acceptable manual handling weights, Europe has seen a move towards lighter weight composite manhole cover materials, which also have the benefits of greater slip resistance and electrical insulating properties.

A manhole cover sits on metal base, with a smaller inset rim which fits the cover. The base and cover are sometimes called "castings", because they are usually made by a casting process, typically sand-casting techniques.

The covers usually feature "pick holes", into which a hook handle tool is inserted to lift them. Pick holes can be concealed for a more watertight lid, or can allow light to shine through. A manhole pick or hook is typically used to lift them, though other tools can be used as well, including electromagnets.

Although the covers are too large to be easily collectible, their ubiquity and the many patterns and descriptions printed on them has led some people to collect pictures of covers from around the world. According to Remo Camerota, the author of a book on the subject titled Drainspotting, 95% of Japanese municipalities have their own cover design, often with colorful inlaid paint.

Despite their weight and cumbersome nature, manhole covers are sometimes stolen, usually for resale as scrap, particularly when metal prices rise.

Shape

Circular

The question of why manhole covers are typically round (in some countries) was made famous by Microsoft when they began asking it as a job-interview question. Originally meant as a psychological assessment of how one approaches a question with more than one correct answer, the problem has produced a number of alternative explanations, from the tautological ("Manhole covers are round because manholes are round.") to the philosophical.

Reasons for the shape include:

  • A round manhole cover cannot fall through its circular opening, whereas a square manhole cover may fall in if it were inserted diagonally in the hole. The existence of a "lip" holding up the lid means that the underlying hole is smaller than the cover, so that other shapes might suffice. (A Reuleaux triangle or other curve of constant width would also serve this purpose, but round covers are much easier to manufacture.)
  • Round tubes are the strongest and most material-efficient shape against the compression of the earth around them, and so it is natural that the cover of a round tube assume a circular shape.
  • A round manhole cover has a smaller surface than a square one, thus less material is needed to cast the manhole cover, meaning lower cost.
  • The bearing surfaces of manhole frames and covers are machined to assure flatness and prevent them from becoming dislodged by traffic. Round castings are much easier to machine using a lathe.
  • Circular covers do not need to be rotated to align with the manhole.
  • A round manhole cover can be more easily moved by being rolled.
  • A round manhole cover can be easily locked in place with a quarter turn (as is done in countries like France), which makes them hard to open without a special tool. Lockable covers do not have to be made as heavy, because traffic passing over them cannot lift them up by suction.

Other

Other manhole shapes can be found, usually squares or rectangles. Nashua, New Hampshire, may be unique in the United States for having triangular manhole covers that point in the direction of the underlying flow. The city is phasing out the triangles, which were made by a local foundry, because they are not large enough to meet modern safety standards and a manufacturer for larger triangles cannot be found. Some manhole covers in Hamilton, Bermuda, are triangular, and hinged. Some triangular water-main covers also exist in San Francisco.

Security and safety

See also: Urban exploration and Stray voltage

Because of concerns about unauthorized access to underground spaces, manhole covers may be locked down, or even temporarily spot-welded in place. This practice has become routine in some locales, as advance preparation for official parades and similar events attracting large crowds or important people.

In urban areas, stray voltage issues have become a significant concern for utilities. In 2004, Jodie S. Lane was electrocuted after stepping on a metal manhole cover, while walking her dog in New York City. As result of this and other incidents, increased attention has been focused on these hazards, including technical conferences on stray voltage detection and prevention.

Interaction with race cars

Because of their aerodynamic design, some modern racing cars create enough vacuum to lift a manhole cover off its recess. During races on city streets, manhole covers must therefore be welded or locked down to prevent injury. In 1990, during the Group C World Sportscar Championship race at Circuit Gilles Villeneuve (located in a public park in Montréal, Quebec), a Brun Motorsport Porsche 962 struck a manhole cover that was lifted by the ground effect of the car he was following, a Courage C24 Porsche. This caused the trailing Porsche to catch fire, and safety issues ended the race shortly afterwards.

 

Propelled into space

According to urban legend, a manhole cover was accidentally launched from its shaft during an underground nuclear test in the 1950s, at great enough speed to achieve escape velocity. The myth is based on a real incident during the Operation Plumbbob nuclear tests, where a 900-kilogram (1,984 lb) steel plate cap was blasted off the test shaft at an unknown velocity, and appears as a blur on a single frame of film of the test; it was never recovered. A calculation before the event gave a predicted speed of six times Earth escape velocity, but the calculation is not likely to have been accurate. After the event, Dr. Robert R. Brownlee described the best estimate of the cover's speed from the photographic evidence as "going like a bat out of hell!

 

Use for navigation

A robotics research paper in 2011 suggested that robots could examine the shapes of specific manhole covers and use them to calculate their geographic position, as a double-check on GPS data.

Manufacturing process

The manufacturing process of metal manhole covers consists of six steps:

  1. Design and simulation
  2. Patterns
  3. Moulding
  4. Melting
  5. Finishing
  6. Quality control.

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Cubic Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Cubic GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Cubic Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

 

 

Polyethylene Tank

Polyethylene Tank


Matin Technical design company produces polyethylene water and chemical tanks to the highest standards. This ensures that each tank is the correct weight and dimensions for its specific purpose. These plastic tanks use screw on lids and highest quality fittings. Besides water tanks and chemical tanks, we also produce and sell the following:

Septic Tanks , SMC Tanks, Water Tanks, Composite Tanks , …

Polyethylene is the most commonly used plastic tank material. It has good chemical resistance, is impact resistant, and easily moldable. Because of its economical price and wide range of uses polyethylene is available in many different styles including vertical, horizontal, cone bottom, cylindrical, double walled, and many more.

Highest quality virgin resin is used and all polyethylene water and chemical tanks go through a strict quality control procedure. These quality plastic products are further backed up by a 1 year warranty.

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank,

Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Ta

Water Tank

Water Tank

A water tank is a container for storing liquid. The need for a water tank is as old as civilization, to provide storage of water for use in many applications, drinking water, irrigation agriculture, fire suppression, agricultural farming, both for plants and livestock, chemical manufacturing, food preparation as well as many other uses. Water tank parameters include the general design of the tank, and choice of construction materials, linings. Various materials are used for making a water tank: plastics (polyethylene, polypropylene), fiberglass, concrete, stone, steel (welded or bolted, carbon, or stainless). Earthen pots also function as water storages. Water tanks are an efficient way to help developing countries to store clean water.

History

Throughout history, wood, ceramic and stone have been used as water tanks. These containers were all naturally occurring and some man made and a few of these tanks are still in service. The Indus Valley Civilization (3000–1500 BC) made use of granaries and water tanks. Medieval castles needed water tanks for the defenders to withstand a siege. A wooden water tank found at the Año Nuevo State Reserve (California) was restored to functionality after being found completely overgrown with ivy. It had been built in 1884.

Types

Chemical contact tank of FDA and NSF polyethylene construction, allows for retention time for chemical treatment chemicals to "contact" (chemically treat) with product water.

Ground water tank, made of lined carbon steel, may receive water from a water well or from surface water, allowing a large volume of water to be placed in inventory and used during peak demand cycles.

Elevated water tank, also known as a water tower, will create a pressure at the ground-level outlet of 1 kPa per 10.2 cm or 1 psi per 2.31 feet of elevation. Thus a tank elevated to 20 metres creates about 200 kPa and a tank elevated to 70 feet creates about 30 psi of discharge pressure, sufficient for most domestic and industrial requirements.

Vertical cylindrical dome top tanks may hold from 200 litres or fifty gallons to several million gallons. Horizontal cylindrical tanks are typically used for transport because their low-profile creates a low center of gravity helping to maintain equilibrium for the transport vehicle, trailer or truck.

A Hydro-pneumatic tank is typically a horizontal pressurized storage tank. Pressurizing this reservoir of water creates a surge free delivery of stored water into the distribution system.

Design

By design a water tank or container should do no harm to the water. Water is susceptible to a number of ambient negative influences, including bacteria, viruses, algae, changes in pH, and accumulation of minerals, accumulated gas. The contamination can come from a variety of origins including piping, tank construction materials, animal and bird feces, mineral and gas intrusion. A correctly designed water tank works to address and mitigate these negative effects.

A safety based news article linked copper poisoning as originating from a plastic tank. The article indicated that rain water was collected and stored in a plastic tank and that the tank did nothing to mitigate the low pH. The water was then brought into homes with copper piping, the copper was released by the high acid rainwater and caused poisoning in humans. It is important to note that since the plastic tank is an inert container, it has no effect on the incoming water. Good practice would be to analyze any water source periodically and treat accordingly, in this case the collected acid rain should be analyzed, and pH adjusted before being brought into a domestic water supply system.

The release of copper due to acidic water is monitored may be accomplished with a variety of technology, beginning with pH strips and going to more sophisticated pH monitors, indicate pH which when acidic or caustic, some with output communication capabilities. There is no "linkage" between the plastic tank and copper poisoning, a solution to the problem is easy, monitor 'stored rainwater' with 'swimming pool strips' cheap and available at, swimming pool supply outlets. If the water is too acidic, contact state/county/local health officials to obtain advice and precise solutions and pH limits and guidelines as to what should be used to treat rainwater to be used as domestic drinking water.

Articles and specifications for water tank applications and design considerations, the AWWA (American Water Works Association) provides details as required by many states to complete a certification process to insure the quality of water being consumed.

The American Water Works Association is a reservoir of water tank knowledge; the association provides specifications for a variety of water storage tank applications as well as design. The AWWA's site provides scientific resources with which the reader will be able to develop an informed perspective on which to make decisions regarding their water tank requirements.

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank,

Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tan

storage Tank

Storage tank

From Wikipedia, the free encyclopedia

 

 

Storage tanks are containers that hold liquids, compressed gases (gas tank) or mediums used for the short- or long-term storage of heat or cold. The term can be used for reservoirs (artificial lakes and ponds), and for manufactured containers. The usage of the word tank for reservoirs is uncommon in American English but is moderately common in British English. In other countries, the term tends to refer only to artificial containers.

In the USA, storage tanks operate under no (or very little) pressure, distinguishing them from pressure vessels. Storage tanks are often cylindrical in shape, perpendicular to the ground with flat bottoms, and a fixed or floating roof. There are usually many environmental regulations applied to the design and operation of storage tanks, often depending on the nature of the fluid contained within. Above ground storage tanks (AST) differ from underground (UST) storage tanks in the kinds of regulations that are applied.

Reservoirs can be covered, in which case they may be called covered or underground storage tanks or reservoirs. Covered water tanks are common in urban areas.

Storage tanks are available in many shapes: vertical and horizontal cylindrical; open top and closed top; flat bottom, cone bottom, slope bottom and dish bottom. Large tanks tend to be vertical cylindrical, or to have rounded corners transition from vertical side wall to bottom profile, to easier withstand hydraulic hydrostatically induced pressure of contained liquid. Most container tanks for handling liquids during transportation are designed to handle varying degrees of pressure.

A large storage tank is sometimes mounted on a lorry (truck) or on an articulated lorry trailer, which is then called a tanker.

Special features

 

 

Cylindrical fuel storage tank with fixed roof and internal floating roof. Capacity approx 2,000,000 litres

Since most liquids can spill, evaporate, or seep through even the smallest opening, special consideration must made for their safe and secure handling. This usually involves building a bunding, or containment dike, around the tank, so that any leakage may be safely contained.

Some storage tanks need a floating roof in addition to or in lieu of the fixed roof and structure. This floating roof rises and falls with the liquid level inside the tank, thereby decreasing the vapor space above the liquid level. Floating roofs are considered a safety requirement as well as a pollution prevention measure for many industries including petroleum refining.

In the United States, metal tanks in contact with soil and containing petroleum products must be protected frocorrosion to prevent escape of the product into the environment. The most effective and common corrosion control techniques for steel in contact with soil is cathodic protection.

For refineries

Tanks for a particular fluid are chosen according to the flash-point of that substance. Generally in refineries and especially for liquid fuels, there are fixed roof tanks, and floating roof tanks.

1.   Fixed roof tanks are meant for liquids with very high flash points, (e.g. fuel oil, water, bitumen etc.) Cone roofs, dome roofs and umbrella roofs are usual. These are insulated to prevent the clogging of certain materials, wherein the heat is provided by steam coils within the tanks. Dome roof tanks are meant for tanks having slightly higher storage pressure than that of atmosphere (e.g. slop oil).

2.   Floating roof tanks are broadly divided into external floating roof tanks (usually called floating roof tanks: FR Tanks) and internal floating roof types (IFR Tanks).

IFR tanks are used for liquids with low flash-points (e.g., ATF, MS. gasoline, ethanol). These tanks are nothing but cone roof tanks with a floating roof inside which travels up and down along with the liquid level. This floating roof traps the vapor from low flash-point fuels. Floating roofs are supported with legs or cables on which they rest. FR tanks do not have a fixed roof (it is open in the top) and has a floating roof only. Medium flash point liquids such as naphtha, kerosene, diesel, and crude oil are stored in these tanks.

One of the common types found in mining areas is the open roof type tank, usually to store ore slurries. These are the easiest storage tanks to build.

Other classifications which can be made for storage tanks are based upon their location in a refinery:

·         COT- crude oil tankages

·         PIT- product and intermediate storage tankages

·         DISPATCH- dispatch area tankages

·         UTILITIES- tanks made in the power plant area, for storage water etc.

·         OSBL tanks- the first 3 types come under out side battery limit tankages

·         ISBL tanks- these are usually mini tanks which are found in the production units of a refinery (as neutralisation tanks, water tanks etc.)

As flash-points of fuels go very low the tanks are usually spherical (known as spheres), tom store LPG, hydrogen, hexane, nitrogen, oxygen etc.

Other types of tank

Atmospheric

An atmospheric tank is a container for holding a liquid at atmospheric pressure. The major design code for welded atmospheric tanks are API 650 and API 620. API 653 is used for analysis of in-service storage tanks. In Europe the design code is Eurocode 3 (EN 1993), part 4-2.

High pressure

 

Horizontal, cylindrical shell, elliptical heads carbon steel pressure vessel

In the case of a liquefied gas such as hydrogen or chlorine, or a compressed gas such as compressed natural gas or MAPP, the storage tank must be made to withstand the sometimes immense pressures exerted by the contents. These tanks may be called cylinders and, being pressure vessels, are sometimes excluded from the class of "tanks".

Thermal storage tanks

One form of seasonal thermal energy storage (STES) is the use of large surface water tanks that are insulated and then covered with earth berms to enable the year-round of solar-thermal heat that is collected primarily in the summer for all-year heating. A related technology has become widespread in Danish district heating systems. The thermal storage medium is gravel and water in large, shallow, lined pits that are covered with insulation, soil and grass.

Ice and slush tanks are used for short-term of cold for use in air conditioning, allowing refrigeration equipment to be run at night when electric power is less expensive, yet provide cooling during hot daytime hours.

Milk tank

In dairy farming a bulk milk cooling tank is a large storage tank for cooling and holding milk at a cold temperature until it can be picked up by a milk hauler. The bulk milk cooling tank is an important milk farm equipment. It is usually made of stainless steel and used every day to store the raw milk on the farm in good condition. It must be cleaned after each milk collection. The milk cooling tank can be the property of the farmer or being rented to the farmer by the dairy plant.

Septic tank

A septic tank is part of a small scale sewage treatment system often referred to as a septic system. It consists of the tank and a septic drain field. Waste water enters the tank where solids can settle and scum floats. Anaerobic digestion occurs on the settled solids, reducing the volume of solids. The water released by the system is normally absorbed by the drain field without needing any further treatment.

Mobile "storage" tanks

While not strictly a "storage" tank, mobile tanks share many of the same features of storage tanks. Also, they must be designed to deal with a heavy sloshing load and the risk of collision or other accident. Some of these include ocean-going oil tankers and LNG carriers; railroad tank cars; and the road and highway traveling tankers. Also included are the holding tanks which are the tanks that store toilet waste on RVs and boats.

Materials of construction

While steel and concrete remain one of the most popular choices for tanksglass-reinforced plasticthermoplastic and polyethylene tanks are increasing in popularity. They offer lower build costs and greater chemical resistance, especially for storage of speciality chemicals. There are several relevant standards, such as British Standard 4994 (1989), DVS (German Welding Institute) 2205, and ASME (American Society of Mechanical Engineers) RTP-1 which give advice on wall thickness, quality control procedures, testing procedures, accreditation, fabrication and design criteria of final product.

Tank failures

There have been numerous catastrophic failures of storage tanks, one of the most notorious being that which occurred at Boston Massachusetts USA on January 14, 1919. The large tank had only been filled eight times when it failed, and resulting wave of molasses killed 21 people in the vicinity. The Boston molasses disaster was caused by poor design and construction, with a wall too thin to bear repeated loads from the contents. The tank had not been tested before use by filling with water, and was also poorly riveted. The owner of the tankUnited States Industrial Alcohol Company, paid out $300,000 (nearly $4 million in 2012 ) in compensation to the victims or their relatives.

There have been many other accidents caused by tanks since then, often caused by faulty welding or by sub-standard steel. New inventions have at least fixed some of the more common issues around the tanks' seal. However, storage tanks also present another problem, surprisingly, when empty. If they have been used to hold oil or oil products such as gasoline, the atmosphere in the tanks may be highly explosive as the space fills with hydrocarbons. If new welding operations are started, then sparks can easily ignite the contents, with disastrous results for the welders. The problem is similar to that of empty bunkers on tanker ships, which are now required to use an inert gas blanket to prevent explosive atmospheres building up from residues.

 

Images

Etymology

The word "tank" originally meant "artificial lake" and came from India, perhaps via Portuguese tanque. It may have some connection with:

  • Some Indian language words similar to "tak" or "tank" and meaning "reservoir for water". In Sanskrit a holding pond or reservoir is called a tadaka. Gujarati talao means "man-made lake". These uses of the word were incorporated into the English language.
  • The Arabic verb istanqa`a اِسْتَنْقَعَ = "it [i.e. some liquid] collected and became stagnant".

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank,

Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composit

 

Fiberglass

Fiberglass

From Wikipedia, the free encyclopedia
 
For the thermal insulation material sometimes called fiberglass, see glass wool. For the glass fiber itself, also sometimes called fiberglass, see glass fiber. For similar composite materials in which the reinforcement fiber is carbon fibers, see carbon-fiber-reinforced polymer.

Fiberglass (or fibreglass) is a type of fiber-reinforced plastic where the reinforcement fiber is specifically glass fiber. The glass fiber may be randomly arranged, flattened into a sheet (called a chopped strand mat), or woven into a fabric. The plastic matrix may be a thermosetting plastic – most often epoxy, polyester resin – or vinylester, or a thermoplastic.

The glass fibers are made of various types of glass depending upon the fiberglass use. These glasses all contain silica or silicate, with varying amounts of oxides of calcium, magnesium, and sometimes boron. To be used in fiberglass, glass fibers have to be made with very low levels of defects.

Fiberglass is a strong lightweight material and is used for many products. Although it is not as strong and stiff as composites based on carbon fiber, it is less brittle, and its raw materials are much cheaper. Its bulk strength and weight are also better than many metals, and it can be more readily molded into complex shapes. Applications of fiberglass include aircraft, boats, automobiles, bath tubs and enclosures, swimming pools, hot tubs, septic tanks, water tanks, roofing, pipes, cladding, casts, surfboards, and external door skins.

Other common names for fiberglass are glass-reinforced plastic (GRP), glass-fiber reinforced plastic (GFRP) or GFK . Because glass fiber itself is sometimes referred to as "fiberglass", the composite is also called "fiberglass reinforced plastic." This article will adopt the convention that "fiberglass" refers to the complete glass fiber reinforced composite material, rather than only to the glass fiber within it.

History

Glass fibers have been produced for centuries, but mass production of glass strands was accidentally discovered in 1932 when Games Slayter, a researcher at Owens-Illinois, directed a jet of compressed air at a stream of molten glass and produced fibers. A patent for this method of producing glass wool was first applied for in 1933. Owens joined with the Corning company in 1935 and the method was adapted by Owens Corning to produce its patented "fibreglas" (one "s") in 1936. Originally, fibreglas was a glass wool with fibers entrapping a great deal of gas, making it useful as an insulator, especially at high temperatures.

A suitable resin for combining the "fibreglass" with a plastic to produce a composite material was developed in 1936 by du Pont. The first ancestor of modern polyester resins is Cyanamid's resin of 1942. Peroxide curing systems were used by then. With the combination of fiberglass and resin the gas content of the material was replaced by plastic. This reduced the insulation properties to values typical of the plastic, but now for the first time the composite showed great strength and promise as a structural and building material. Confusingly, many glass fiber composites continued to be called "fiberglass" (as a generic name) and the name was also used for the low-density glass wool product containing gas instead of plastic.

Ray Greene of Owens Corning is credited with producing the first composite boat in 1937, but did not proceed further at the time due to the brittle nature of the plastic used. In 1939 Russia was reported to have constructed a passenger boat of plastic materials, and the United States a fuselage and wings of an aircraft. The first car to have a fiber-glass body was a 1946 prototype of the Stout Scarab, but the model did not enter production.

Fiber

Glass reinforcements used for fiberglass are supplied in different physical forms, microspheres, chopped or woven.

Unlike glass fibers used for insulation, for the final structure to be strong, the fiber's surfaces must be almost entirely free of defects, as this permits the fibers to reach gigapascal tensile strengths. If a bulk piece of glass were defect-free, it would be equally as strong as glass fibers; however, it is generally impractical to produce and maintain bulk material in a defect-free state outside of laboratory conditions.

Production

The process of manufacturing fiberglass is called pultrusion. The manufacturing process for glass fibers suitable for reinforcement uses large furnaces to gradually melt the silica sand, limestone, kaolin clay, fluorspar, colemanite, dolomite and otherminerals to liquid form. It is then extruded through bushings, which are bundles of very small orifices (typically 5–25 micrometres in diameter for E-Glass, 9 micrometres for S-Glass). These filaments are then sized (coated) with a chemical solution. The individual filaments are now bundled in large numbers to provide a roving. The diameter of the filaments, and the number of filaments in the roving, determine its weight, typically expressed in one of two measurement systems:

  • yield, or yards per pound (the number of yards of fiber in one pound of material; thus a smaller number means a heavier roving). Examples of standard yields are 225yield, 450yield, 675yield.
  • tex, or grams per km (how many grams 1 km of roving weighs, inverted from yield; thus a smaller number means a lighter roving). Examples of standard tex are 750tex, 1100tex, 2200tex.

These rovings are then either used directly in a composite application such as pultrusion, filament winding (pipe), gun roving (where an automated gun chops the glass into short lengths and drops it into a jet of resin, projected onto the surface of a mold), or in an intermediary step, to manufacture fabrics such as chopped strand mat (CSM) (made of randomly oriented small cut lengths of fiber all bonded together), woven fabrics, knit fabrics or uni-directional fabrics.

Chopped strand mat

Chopped strand mat or CSM is a form of reinforcement used in fiberglass. It consists of glass fibers laid randomly across each other and held together by a binder.

It is typically processed using the hand lay-up technique, where sheets of material are placed in a mold and brushed with resin. Because the binder dissolves in resin, the material easily conforms to different shapes when wetted out. After the resin cures, the hardened product can be taken from the mold and finished.

Using chopped strand mat gives a fiberglass with isotropic in-plane material properties.

Sizing

A coating or primer is applied to the roving to:

  • Help protect the glass filaments for processing and manipulation.
  • Ensure proper bonding to the resin matrix, thus allowing for transfer of shear loads from the glass fibers to the thermoset plastic. Without this bonding, the fibers can 'slip' in the matrix, causing localized failure.

Properties

An individual structural glass fiber is both stiff and strong in tension and compression—that is, along its axis. Although it might be assumed that the fiber is weak in compression, it is actually only the long aspect ratio of the fiber which makes it seem so; i.e., because a typical fiber is long and narrow, it buckles easily. On the other hand, the glass fiber is weak in shear—that is, across its axis. Therefore, if a collection of fibers can be arranged permanently in a preferred direction within a material, and if they can be prevented from buckling in compression, the material will be preferentially strong in that direction.

Furthermore, by laying multiple layers of fiber on top of one another, with each layer oriented in various preferred directions, the material's overall stiffness and strength can be efficiently controlled. In fiberglass, it is the plastic matrix which permanently constrains the structural glass fibers to directions chosen by the designer. With chopped strand mat, this directionality is essentially an entire two dimensional plane; with woven fabrics or unidirectional layers, directionality of stiffness and strength can be more precisely controlled within the plane.

A fiberglass component is typically of a thin "shell" construction, sometimes filled on the inside with structural foam, as in the case of surfboards. The component may be of nearly arbitrary shape, limited only by the complexity and tolerances of the mold used for manufacturing the shell.

The mechanical functionality of materials is heavily relied on the combined performances of both the resin (AKA matrix) and fibres. For example, in severe temperature condition (over 180 °C) resin component of the composite may lose its functionality partially because of bond deterioration of resin and fibre. However, GFRPs can show still significant residual strength after experiencing high temperature (200 °C).

Types of glass fiber used

Composition: the most common types of glass fiber used in fiberglass is E-glass, which is alumino-borosilicate glass with less than 1% w/w alkali oxides, mainly used for glass-reinforced plastics (GRP). Other types of glass used are A-glass (Alkali-lime glass with little or no boron oxide), E-CR-glass (Electrical/Chemical Resistance; alumino-lime silicate with less than 1% w/w alkali oxides, with high acid resistance), C-glass (alkali-lime glass with high boron oxide content, used for glass staple fibers and insulation), D-glass (borosilicate glass, named for its low Dielectric constant), R-glass (alumino silicate glass without MgO and CaO with high mechanical requirements as Reinforcement), and S-glass (alumino silicate glass without CaO but with high MgO content with high tensile strength).

Naming and use: pure silica (silicon dioxide), when cooled as fused quartz into a glass with no true melting point, can be used as a glass fiber for fiberglass, but has the drawback that it must be worked at very high temperatures. In order to lower the necessary work temperature, other materials are introduced as "fluxing agents" (i.e., components to lower the melting point). Ordinary A-glass ("A" for "alkali-lime") or soda lime glass, crushed and ready to be remelted, as so-called cullet glass, was the first type of glass used for fiberglass. E-glass ("E" because of initial Electrical application), is alkali free, and was the first glass formulation used for continuous filament formation. It now makes up most of the fiberglass production in the world, and also is the single largest consumer of boron minerals globally. It is susceptible to chloride ion attack and is a poor choice for marine applications. S-glass ("S" for "stiff") is used when tensile strength (high modulus) is important, and is thus an important building and aircraft epoxy composite (it is called R-glass, "R" for "reinforcement" in Europe). C-glass ("C" for "chemical resistance") and T-glass ("T" is for "thermal insulator"—a North American variant of C-glass) are resistant to chemical attack; both are often found in insulation-grades of blown fiberglass.

Table of some common fiberglass types

Material Specific gravity Tensile strength MPa (ksi) Compressive strength MPa (ksi)
Polyester resin (Not reinforced) 1.28 55 (7.98) 140 (20.3)
Polyester and Chopped Strand Mat Laminate 30% E-glass 1.4 100 (14.5) 150 (21.8)
Polyester and Woven Rovings Laminate 45% E-glass 1.6 250 (36.3) 150 (21.8)
Polyester and Satin Weave Cloth Laminate 55% E-glass 1.7 300 (43.5) 250 (36.3)
Polyester and Continuous Rovings Laminate 70% E-glass 1.9 800 (116) 350 (50.8)
E-Glass Epoxy composite 1.99 1,770 (257)  
S-Glass Epoxy composite 1.95 2,358 (342)  

Applications

A cryostat made of fiberglass

Fiberglass is an immensely versatile material due to its light weight, inherent strength, weather-resistant finish and variety of surface textures.

The development of fiber-reinforced plastic for commercial use was extensively researched in the 1930s. It was of particular interest to the aviation industry. A means of mass production of glass strands was accidentally discovered in 1932 when a researcher at Owens-Illinois directed a jet of compressed air at a stream of molten glass and produced fibers. After Owens merged with the Corning company in 1935, Owens Corning adapted the method to produce its patented "Fiberglas" (one "s"). A suitable resin for combining the "Fiberglas" with a plastic was developed in 1936 by du Pont. The first ancestor of modern polyester resins is Cyanamid's of 1942. Peroxide curing systems were used by then.

During World War II, fiberglass was developed as a replacement for the molded plywood used in aircraft radomes (fiberglass beingtransparent to microwaves). Its first main civilian application was for the building of boats and sports car bodies, where it gained acceptance in the 1950s. Its use has broadened to the automotive and sport equipment sectors. In some aircraft production, fiberglass is now yielding to carbon fiber, which weights less and is stronger by volume and weight.

Advanced manufacturing techniques such as pre-pregs and fiber rovings extend fiberglass's applications and the tensile strength possible with fiber-reinforced plastics.

Fiberglass is also used in the telecommunications industry for shrouding antennas, due to its RF permeability and low signal attenuationproperties. It may also be used to conceal other equipment where no signal permeability is required, such as equipment cabinets andsteel support structures, due to the ease with which it can be molded and painted to blend with existing structures and surfaces. Other uses include sheet-form electrical insulators and structural components commonly found in power-industry products.

Because of fiberglass's light weight and durability, it is often used in protective equipment such as helmets. Many sports use fiberglass protective gear, such as goaltenders' and catchers' masks.

Storage tanks

Several large fiberglass tanks at an airport

Storage tanks can be made of fiberglass with capacities up to about 300 tonnes. Smaller tanks can be made with chopped strand mat cast over a thermoplastic inner tank which acts as a preform during construction. Much more reliable tanks are made using woven mat or filament wound fiber, with the fiber orientation at right angles to the hoop stress imposed in the side wall by the contents. Such tanks tend to be used for chemical storage because the plastic liner (often polypropylene) is resistant to a wide range of corrosive chemicals. Fiberglass is also used for septic tanks.

House building

A fiberglass dome house in Davis, California

Glass-reinforced plastics are also used to produce house building components such as roofing laminate, door surrounds, over-door canopies, window canopies and dormers, chimneys, coping systems, and heads with keystones and sills. The material's reduced weight and easier handling, compared to wood or metal, allows faster installation. Mass-produced fiberglass brick-effect panels can be used in the construction of composite housing, and can include insulation to reduce heat loss.

Piping

GRP and GRE pipe can be used in a variety of above- and below-ground systems, including those for:

  • Desalination
  • Water treatment
  • Water distribution networks
  • Chemical process plants
  • Firewater
  • Hot and Cold water
  • Drinking water
  • Wastewater/sewage, Municipal waste
  • Natural gas, LPG

Examples of fiberglass use

Kayaks made of fiberglass
  • DIY bows / youth recurve; longbows
  • Pole vaulting poles
  • Equipment handles(Hammers, axes, etc.)
  • Traffic lights
  • Ship hulls
  • Waterpipes
  • Helicopter rotor blades
  • Surfboards, tent poles
  • Gliders, kit cars, microcars, karts, bodyshells, kayaks, flat roofs, lorries
  • Pods, domes and architectural features where a light weight is necessary
  • High-end bicycles
  • Auto body parts (for instance, body kits, hoods, spoilers, etc.), and entire auto bodies (e.g. Lotus Elan, Anadol, Reliant, Quantum Quantum Coupé, Chevrolet Corvette andStudebaker Avanti, and DeLorean DMC-12 underbody)
  • Antenna covers and structures, such as radomes, UHF broadcasting antennas, and pipes used in hex beam antennas for amateur radio communications
  • FRP tanks and vessels: FRP is used extensively to manufacture chemical equipment and tanks and vessels. BS4994 is a British standard related to this application.
  • Most commercial velomobiles
  • Most printed circuit boards consist of alternating layers of copper and fiberglass FR-4
  • Large commercial wind turbine blades
  • RF coils used in MRI scanners
  • Drum Sets
  • Sub-sea installation protection covers
  • Reinforcement of asphalt pavement, as a fabric or mesh interlayer between lifts
  • Helmets and other protective gear used in various sports
  • Orthopedic casts
  • Fiberglass grating is used for walkways on ships and oil rigs, and in factories
  • Fiber-reinforced composite columns
  • Water slides

Construction methods

Filament winding

Filament winding is a fabrication technique mainly used for manufacturing open (cylinders) or closed end structures (pressure vessels or tanks). The process involves winding filaments under tension over a male mandrel. The mandrel rotates while a wind eye on a carriage moves horizontally, laying down fibers in the desired pattern. The most common filaments are carbon or glass fiber and are coated with synthetic resin as they are wound. Once the mandrel is completely covered to the desired thickness, the resin is cured, often the mandrel is placed in an oven to achieve this, though sometimes radiant heaters are used with the mandrel still turning in the machine. Once the resin has cured, the mandrel is removed, leaving the hollow final product. For some products such as gas bottles the 'mandrel' is a permanent part of the finished product forming a liner to prevent gas leakage or as a barrier to protect the composite from the fluid to be stored.

Filament winding is well suited to automation, and there are many applications, such as pipe and small pressure vessel that are wound and cured without any human intervention. The controlled variables for winding are fiber type, resin content, wind angle, tow or bandwidth and thickness of the fiber bundle. The angle at which the fiber has an effect on the properties of the final product. A high angle "hoop" will provide circumferential or "burst" strength, while lower angle patterns (polar or helical) will provide greater longitudinal tensile strength.

Products currently being produced using this technique range from pipes, golf clubs, Reverse Osmosis Membrane Housings, oars, bicycle forks, bicycle rims, power and transmission poles, pressure vessels to missile casings, aircraft fuselages and lamp posts and yacht masts.

Fiberglass hand lay-up operation

A release agent, usually in either wax or liquid form, is applied to the chosen mold to allow finished product to be cleanly removed from the mold. Resin—typically a 2-part polyester, vinyl or epoxy—is mixed with its hardener and applied to the surface. Sheets of fiberglass matting are laid into the mold, then more resin mixture is added using a brush or roller. The material must conform to the mold, and air must not be trapped between the fiberglass and the mold. Additional resin is applied and possibly additional sheets of fiberglass. Hand pressure, vacuum or rollers are used to be sure the resin saturates and fully wets all layers, and that any air pockets are removed. The work must be done quickly, before the resin starts to cure, unless high temperature resins are used which will not cure until the part is warmed in an oven. In some cases, the work is covered with plastic sheets and vacuum is drawn on the work to remove air bubbles and press the fiberglass to the shape of the mold.

Fiberglass spray lay-up operation

The fiberglass spray lay-up process is similar to the hand lay-up process, but differs in the application of the fiber and resin to the mold. Spray-up is an open-molding composites fabrication process where resin and reinforcements are sprayed onto a mold. The resin and glass may be applied separately or simultaneously "chopped" in a combined stream from a chopper gun. Workers roll out the spray-up to compact the laminate. Wood, foam or other core material may then be added, and a secondary spray-up layer imbeds the core between the laminates. The part is then cured, cooled and removed from the reusable mold.

Pultrusion operation

Diagram of the pultrusion process.

Pultrusion is a manufacturing method used to make strong, lightweight composite materials. In pultrusion, material is pulled through forming machinery using either a hand-over-hand method or a continuous-roller method (as opposed to extrusion, where the material is pushed through dies). In fiberglass pultrusion, fibers (the glass material) are pulled from spools through a device that coats them with a resin. They are then typically heat-treated and cut to length. Fiberglass produced this way can be made in a variety of shapes and cross-sections, such as W or S cross-sections.

Warping

One notable feature of fiberglass is that the resins used are subject to contraction during the curing process. For polyester this contraction is often 5–6%; for epoxy, about 2%. Because the fibers do not contract, this differential can create changes in the shape of the part during curing. Distortions can appear hours, days or weeks after the resin has set.

While this distortion can be minimised by symmetric use of the fibers in the design, a certain amount of internal stress is created; and if it becomes too great, cracks form.

Health problems

In June 2011, the National Toxicology Program (NTP) removed from its Report on Carcinogens all biosoluble glass wool used in home and building insulation and for non-insulation products. However, NTP considers fibrous glass dust to be "reasonably anticipated [as] a human carcinogen (Certain Glass Wool Fibers (Inhalable))". Similarly, California's Office of Environmental Health Hazard Assessment ("OEHHA") published a November, 2011 modification to its Proposition 65 listing to include only "Glass wool fibers (inhalable and biopersistent)." The actions of U.S. NTP and California's OEHHA mean that a cancer warning label for biosoluble fiber glass home and building insulation is no longer required under federal or California law. All fiberglass wools commonly used for thermal and acoustical insulation were reclassified by the International Agency for Research on Cancer ("IARC") in October 2001 as Not Classifiable as to carcinogenicity to humans (Group 3).

People can be exposed to fiberglass in the workplace by breathing it in, skin contact, or eye contact. The Occupational Safety and Health Administration (OSHA) has set the legal limit (permissible exposure limit) for fiberglass exposure in the workplace as 15 mg/m3 total and 5 mg/m3 in respiratory exposure over an 8-hour workday. The National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit (REL) of 3 fibers/cm3 (less than 3.5 micrometers in diameter and greater than 10 micrometers in length) as a time-weighted average over an 8-hour workday, and a 5 mg/m3 total limit.

The European Union and Germany classify synthetic vitreous fibers as possibly or probably carcinogenic, but fibers can be exempt from this classification if they pass specific tests. Evidence for these classifications is primarily from studies on experimental animals and mechanisms of carcinogenesis. The glass wool epidemiology studies have been reviewed by a panel of international experts convened by the IARC. These experts concluded: "Epidemiologic studies published during the 15 years since the previous IARC monographs review of these fibers in 1988 provide no evidence of increased risks of lung cancer or mesothelioma (cancer of the lining of the body cavities) from occupational exposures during the manufacture of these materials, and inadequate evidence overall of any cancer risk." Similar reviews of the epidemiology studies have been conducted by the Agency for Toxic Substances and Disease Registry ("ATSDR"), the National Toxicology Program, the National Academy of Sciences and Harvard's Medical and Public Health Schools which reached the same conclusion as IARC that there is no evidence of increased risk from occupational exposure to glass wool fibers.

Fiberglass will irritate the eyes, skin, and the respiratory system. Potential symptoms include irritation of eyes, skin, nose, throat, dyspnea (breathing difficulty); sore throat, hoarseness and cough. Scientific evidence demonstrates that fiber glass is safe to manufacture, install and use when recommended work practices are followed to reduce temporary mechanical irritation.

While the resins are cured, styrene vapors are released. These are irritating to mucous membranes and respiratory tract. Therefore, the Hazardous Substances Ordinance in Germany dictates a maximum occupational exposure limit of 86 mg/m³. In certain concentrations may even occur a potentially explosive mixture. Further manufacture of GRP components (grinding, cutting, sawing) creates fine dusts and chips containing glass filaments, as well as tacky dust, in quantities substantial enough to affect people's health and the functionality of machines and equipment. The installation of effective extraction and filtration equipment is required to ensure safety and efficiency.

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank,

Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank, Composite water Tanks , GRP water Tanks , SMC water Tanks, Polyethylene water Tanks , Septic water storage Tanks, Underground water storage tanks , Underground storage tank, underground septic tank, underground grp tank, underground grp water tank, Composite Tanks ,  GRP Tanks ,  SMC Tanks, Polyethylene Tanks , Septic Tanks , Septic Tank , Composite Tank , Grp Tank , SMC Tank , FRP tank, FRP storage tank, Fiberglass tanks, Fiberglass storage tank, Fiberglass water Tank,   Septic Tanks , Polyethylene Septic Tanks, Composite Tanks , GRP Tanks, SMC Panel Tank, SMC Sectional Tank, SMC Sectional Panel Tank, GRP Panel Tank, GRP Sectional Tank, GRP Sectiomal Panel Tank, water storage tank, SMC water storage tank, GRP water storage tank, grp sectional water storage tank, SMC sectional water storage tank, Fiberglass water storage tank, Composite water storage tank, FRP water storage tank, Oil retention Tank, Oil retention Septic Tank, waste Oil retention Tank, grp oil retention tank, fiberglass oil retention tank,

FRP , Fibreglass Reinforced Plastics, GRP, Glass Reinforced Plastics, tanks, vessels, composite, glass, fibreglass, fiberglass, thermoplastic, PP, PVC, PTFE, ECTFE, ETFE, FEP, CPVC, PVDF, thermoplastic, liner, resistance , corrosion, fibres, pressure, water, storage tank, FRP Vessels, resin, GRP Tanks, Water Storage Tanks, reinforcement, Iran, Middle east,   

Fibre-reinforced plastic (FRP)

Fibre-reinforced plastic

 

From Wikipedia, the free encyclopedia

 

 

 

Fibre-reinforced plastic (FRP) (also fibre-reinforced polymer) is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper or wood or asbestos have been used. The polymer is usually an epoxy, vinylester or polyester thermosetting plastic; and phenol formaldehyde resins are still in use.

 

FRPs are commonly used in the aerospace-, automotive-, marine- and construction industries; and in ballistic armor.

 

 

 

Process Definition

 

A polymer is generally manufactured by step-growth polymerization or addition polymerization. When combined with various agents to enhance or in any way alter the material properties of polymers the result is referred to as a plastic. Composite plastics refer to those types of plastics that result from bonding two or more homogeneous materials with different material properties to derive a final product with certain desired material and mechanical properties. Fibre-reinforced plastics are a category of Composite plastics that specifically use fibre materials to mechanically enhance the strength and elasticity of plastics. The original plastic material without fibre reinforcement is known as the matrix. The matrix is a tough but relatively weak plastic that is reinforced by stronger stiffer reinforcing filaments or fibres. The extent that strength and elasticity are enhanced in a fibre-reinforced plastic depends on the mechanical properties of both the fibre and matrix, their volume relative to one another, and the fibre length and orientation within the matrix. Reinforcement of the matrix occurs by definition when the FRP material exhibits increased strength or elasticity relative to the strength and elasticity of the matrix alone.

 

History

 

Bakelite was the first fibre-reinforced plastic. Dr. Leo Baekeland had originally set out to find a replacement for shellac (made from the excretion of lac beetles). Chemists had begun to recognize that many natural resins and fibres were polymers, and Baekeland investigated the reactions of phenol and formaldehyde. He first produced a soluble phenol-formaldehyde shellac called "Novolak" that never became a market success, then turned to developing a binder for asbestos which, at that time, was moulded with rubber. By controlling the pressure and temperature applied to phenol and formaldehyde, he found in 1905 he could produce his dreamed-of hard mouldable material (the world's first synthetic plastic): bakelite. He announced his invention at a meeting of the American Chemical Society on February 5, 1909.

 

The development of fibre-reinforced plastic for commercial use was being extensively researched in the 1930s. In the UK, considerable research was undertaken by pioneers such as Norman de Bruyne. It was particularly of interest to the aviation industry.

 

Mass production of glass strands was discovered in 1932 when Games Slayter, a researcher at Owens-Illinois accidentally directed a jet of compressed air at a stream of molten glass and produced fibres. A patent for this method of producing glass wool was first applied for in 1933. Owens joined with the Corning company in 1935 and the method was adapted by Owens Corning to produce its patented "fibreglas" (one "s") in 1936. Originally, fibreglas was a glass wool with fibres entrapping a great deal of gas, making it useful as an insulator, especially at high temperatures.

 

A suitable resin for combining the "fibreglas" with a plastic to produce a composite material, was developed in 1936 by du Pont. The first ancestor of modern polyester resins isCyanamid's resin of 1942. Peroxide curing systems were used by then. With the combination of fiberglas and resin the gas content of the material was replaced by plastic. This reduced to insulation properties to values typical of the plastic, but now for the first time the composite showed great strength and promise as a structural and building material. Confusingly, many glass fiber composites continued to be called "fiberglass" (as a generic name) and the name was also used for the low-density glass wool product containing gas instead of plastic.

 

Ford prototype plastic car

 

Fairchild F-46

 

Ray Greene of Owens Corning is credited with producing the first composite boat in 1937, but did not proceed further at the time due to the brittle nature of the plastic used. In 1939 Russia was reported to have constructed a passenger boat of plastic materials, and the United States a fuselage and wings of an aircraft. The first car to have a fibre-glass body was the 1946 Stout Scarab. Only one of this model was built. The Ford prototype of 1941 could have been the first plastic car, but there is some uncertainty around the materials used as it was destroyed shortly afterwards.

 

The first fibre-reinforced plastic plane was either the Fairchild F-46, first flown on 12 May 1937, or the Californian built Bennett Plastic Plane. A fibreglass fuselage was used on a modified Vultee BT-13A designated the XBT-16 based at Wright Field in late 1942. In 1943 further experiments were undertaken building structural aircraft parts from composite materials resulting in the first plane, a Vultee BT-15, with a GFRP fuselage, designated the XBT-19, being flown in 1944. A significant development in the tooling for GFRP components had been made by Republic Aviation Corporation in 1943.

 

Carbon fibre production began in the late 1950s and was used, though not widely, in British industry beginning in the early 1960s. Aramid fibres were being produced around this time also, appearing first under the trade name Nomex by DuPont. Today, each of these fibres is used widely in industry for any applications that require plastics with specific strength or elastic qualities. Glass fibres are the most common across all industries, although carbon-fibre and carbon-fibre-aramid composites are widely found in aerospace, automotive and sporting good applications. These three (glass, carbon, and aramid) continue to be the important categories of fibre used in FRP.

 

Global polymer production on the scale present today began in the mid 20th century, when low material and productions costs, new production technologies and new product categories combined to make polymer production economical. The industry finally matured in the late 1970s when world polymer production surpassed that of steel, making polymers the ubiquitous material that it is today. Fibre-reinforced plastics have been a significant aspect of this industry from the beginning.

 

Process Description

 

FRP involves two distinct processes, the first is the process whereby the fibrous material is manufactured and formed, the second is the process whereby fibrous materials are bonded with the matrix during moulding.

 

Fibre

 

The manufacture of fibre fabric

 

Reinforcing Fibre is manufactured in both two-dimensional and three-dimensional orientations

 

  1. Two Dimensional Fibre-Reinforced Polymer are characterized by a laminated structure in which the fibres are only aligned along the plane in x-direction and y-direction of the material. This means that no fibres are aligned in the through thickness or the z-direction, this lack of alignment in the through thickness can create a disadvantage in cost and processing. Costs and labour increase because conventional processing techniques used to fabricate composites, such as wet hand lay-up, autoclave and resin transfer moulding, require a high amount of skilled labor to cut, stack and consolidate into a preformed component.
  2. Three-dimensional Fibre-Reinforced Polymer composites are materials with three dimensional fibre structures that incorporate fibres in the x-direction, y-direction and z-direction. The development of three-dimensional orientations arose from industry's need to reduce fabrication costs, to increase through-thickness mechanical properties, and to improve impact damage tolerance; all were problems associated with two dimensional fibre-reinforced polymers.

 

The manufacture of fibre preforms

 

Fibre preforms are how the fibres are manufactured before being bonded to the matrix. Fibre preforms are often manufactured in sheets, continuous mats, or as continuous filaments for spray applications. The four major ways to manufacture the fibre preform is through the textile processing techniques of weaving, knitting, braiding and stitching.

 

  1. Weaving can be done in a conventional manner to produce two-dimensional fibres as well in a multilayer weaving that can create three-dimensional fibres. However, multilayer weaving is required to have multiple layers of warp yarns to create fibres in the z- direction creating a few disadvantages in manufacturing,namely the time to set up all the warp yarns on the loom. Therefore, most multilayer weaving is currently used to produce relatively narrow width products, or high value products where the cost of the preform production is acceptable. Another one of the main problems facing the use of multilayer woven fabrics is the difficulty in producing a fabric that contains fibres oriented with angles other than 0" and 90" to each other respectively.
  2. The second major way of manufacturing fibre preforms is Braiding. Braiding is suited to the manufacture of narrow width flat or tubular fabric and is not as capable as weaving in the production of large volumes of wide fabrics. Braiding is done over top of mandrels that vary in cross-sectional shape or dimension along their length. Braiding is limited to objects about a brick in size. Unlike standard weaving, braiding can produce fabric that contains fibres at 45 degrees angles to one another. Braiding three-dimensional fibres can be done using four step, two-step or Multilayer Interlock Braiding.Four step or row and column braiding utilizes a flat bed containing rows and columns of yarn carriers that form the shape of the desired preform. Additional carriers are added to the outside of the array, the precise location and quantity of which depends upon the exact preform shape and structure required. There are four separate sequences of row and column motion, which act to interlock the yarns and produce the braided preform. The yarns are mechanically forced into the structure between each step to consolidate the structure in a similar process to the use of a reed in weaving. Two-step braiding is unlike the four-step process because the two-step includes a large number of yarns fixed in the axial direction and a fewer number of braiding yarns. The process consists of two steps in which the braiding carriers move completely through the structure between the axial carriers. This relatively simple sequence of motions is capable of forming preforms of essentially any shape, including circular and hollow shapes. Unlike the four-step process, the two-step process does not require mechanical compaction the motions involved in the process allows the braid to be pulled tight by yarn tension alone. The last type of braiding is multi-layer interlocking braiding that consists of a number of standard circular braiders being joined together to form a cylindrical braiding frame. This frame has a number of parallel braiding tracks around the circumference of the cylinder but the mechanism allows the transfer of yarn carriers between adjacent tracks forming a multilayer braided fabric with yarns interlocking to adjacent layers. The multilayer interlock braid differs from both the four step and two-step braids in that the interlocking yarns are primarily in the plane of the structure and thus do not significantly reduce the in-plane properties of the preform. The four-step and two-step processes produce a greater degree of interlinking as the braiding yarns travel through the thickness of the preform, but therefore contribute less to the in-plane performance of the preform. A disadvantage of the multilayer interlock equipment is that due to the conventional sinusoidal movement of the yarn carriers to form the preform, the equipment is not able to have the density of yarn carriers that is possible with the two step and four step machines.
  3. Knitting fibre preforms can be done with the traditional methods of Warp and [Weft] Knitting, and the fabric produced is often regarded by many as two-dimensional fabric, but machines with two or more needle beds are capable of producing multilayer fabrics with yams that traverse between the layers. Developments in electronic controls for needle selection and knit loop transfer, and in the sophisticated mechanisms that allow specific areas of the fabric to be held and their movement controlled. This has allowed the fabric to form itself into the required three-dimensional preform shape with a minimum of material wastage.
  4. Stitching is arguably the simplest of the four main textile manufacturing techniques and one that can be performed with the smallest investment in specialized machinery. Basically stitching consists of inserting a needle, carrying the stitch thread, through a stack of fabric layers to form a 3D structure. The advantages of stitching are that it is possible to stitch both dry and prepreg fabric, although the tackiness of the prepreg makes the process difficult and generally creates more damage within the prepreg material than in the dry fabric. Stitching also utilizes the standard two-dimensional fabrics that are commonly in use within the composite industry therefore there is a sense of familiarity concerning the material systems. The use of standard fabric also allows a greater degree of flexibility in the fabric lay-up of the component than is possible with the other textile processes, which have restrictions on the fibre orientations that can be produced.

 

Forming processes

 

A rigid structure is usually used to establish the shape of FRP components. Parts can be laid up on a flat surface referred to as a "caul plate" or on a cylindrical structure referred to as a "mandrel". However most fibre-reinforced plastic parts are created with a mold or "tool." Molds can be concave female molds, male molds, or the mold can completely enclose the part with a top and bottom mold.

 

The moulding processes of FRP plastics begins by placing the fibre preform on or in the mold. The fibre preform can be dry fibre, or fibre that already contains a measured amount of resin called "prepreg". Dry fibres are "wetted" with resin either by hand or the resin is injected into a closed mold. The part is then cured, leaving the matrix and fibres in the shape created by the mold. Heat and/or pressure are sometimes used to cure the resin and improve the quality of the final part. The different methods of forming are listed below.

 

Bladder moulding

 

Individual sheets of prepreg material are laid up and placed in a female-style mould along with a balloon-like bladder. The mould is closed and placed in a heated press. Finally, the bladder is pressurized forcing the layers of material against the mould walls.

 

Compression moulding

 

When the raw material (plastic block,rubber block, plastic sheet, or granules) contains reinforcing fibres, a compression molded part qualifies as a fibre-reinforced plastic. More typically the plastic preform used in compression molding does not contain reinforcing fibres. In compression molding, a "preform" or "charge", of SMC, BMC is placed into mould cavity. The mould is closed and the material is formed & cured inside by pressure and heat. Compression moulding offers excellent detailing for geometric shapes ranging from pattern and relief detailing to complex curves and creative forms, to precision engineering all within a maximum curing time of 20 minutes.[20]

 

Autoclave and vacuum bag

 

Individual sheets of prepreg material are laid-up and placed in an open mold. The material is covered with release film, bleeder/breather material and a vacuum bag. A vacuum is pulled on part and the entire mould is placed into an autoclave (heated pressure vessel). The part is cured with a continuous vacuum to extract entrapped gasses from laminate. This is a very common process in the aerospace industry because it affords precise control over moulding due to a long, slow cure cycle that is anywhere from one to several hours. This precise control creates the exact laminate geometric forms needed to ensure strength and safety in the aerospace industry, but it is also slow and labour-intensive, meaning costs often confine it to the aerospace industry.

 

Mandrel wrapping

 

Sheets of prepreg material are wrapped around a steel or aluminium mandrel. The prepreg material is compacted by nylon or polypropylene cello tape. Parts are typically batch cured by vacuum bagging and hanging in an oven. After cure the cello and mandrel are removed leaving a hollow carbon tube. This process creates strong and robust hollow carbon tubes.

 

Wet layup

 

Wet layup forming combines fibre reinforcement and the matrix as they are placed on the forming tool. Reinforcing Fibre layers are placed in an open mould and then saturated with a wet resin by pouring it over the fabric and working it into the fabric. The mould is then left so that the resin will cure, usually at room temperature, though heat is sometimes used to ensure a proper cure. Sometimes a vacuum bag is used to compress a wet layup. Glass fibres are most commonly used for this process, the results are widely known as fibreglass, and is used to make common products like skis, canoes, kayaks and surf boards.

 

Chopper gun

 

Continuous strands of fibreglass are pushed through a hand-held gun that both chops the strands and combines them with a catalysed resin such as polyester. The impregnated chopped glass is shot onto the mould surface in whatever thickness and design the human operator thinks is appropriate. This process is good for large production runs at economical cost, but produces geometric shapes with less strength than other moulding processes and has poor dimensional tolerance.

 

Filament winding

 

Machines pull fibre bundles through a wet bath of resin and wound over a rotating steel mandrel in specific orientations Parts are cured either room temperature or elevated temperatures. Mandrel is extracted, leaving a final geometric shape but can be left in some cases.

 

Pultrusion

 

Fibre bundles and slit fabrics are pulled through a wet bath of resin and formed into the rough part shape. Saturated material is extruded from a heated closed die curing while being continuously pulled through die. Some of the end products of pultrusion are structural shapes, i.e. I beam, angle, channel and flat sheet. These materials can be used to create all sorts of fibreglass structures such as ladders, platforms, handrail systems tank, pipe and pump supports.

 

Resin transfer molding

 

Also called resin infusion. Fabrics are placed into a mould into which wet resin is then injected. Resin is typically pressurized and forced into a cavity which is under vacuum inresin transfer molding. Resin is entirely pulled into cavity under vacuum in vacuum-assisted resin transfer molding. This moulding process allows precise tolerances and detailed shaping but can sometimes fail to fully saturate the fabric leading to weak spots in the final shape.

 

Advantages and limitations

 

FRP allows the alignment of the glass fibres of thermoplastics to suit specific design programs. Specifying the orientation of reinforcing fibres can increase the strength and resistance to deformation of the polymer. Glass reinforced polymers are strongest and most resistive to deforming forces when the polymers fibres are parallel to the force being exerted, and are weakest when the fibres are perpendicular. Thus this ability is at once both an advantage or a limitation depending on the context of use. Weak spots of perpendicular fibres can be used for natural hinges and connections, but can also lead to material failure when production processes fail to properly orient the fibres parallel to expected forces. When forces are exerted perpendicular to the orientation of fibres the strength and elasticity of the polymer is less than the matrix alone. In cast resin components made of glass reinforced polymers such as UP and EP, the orientation of fibres can be oriented in two-dimensional and three-dimensional weaves. This means that when forces are possibly perpendicular to one orientation, they are parallel to another orientation; this eliminates the potential for weak spots in the polymer.

 

Failure modes

 

Structural failure can occur in FRP materials when:

 

  • Tensile forces stretch the matrix more than the fibres, causing the material to shear at the interface between matrix and fibres.
  • Tensile forces near the end of the fibres exceed the tolerances of the matrix, separating the fibres from the matrix.
  • Tensile forces can also exceed the tolerances of the fibres causing the fibres themselves to fracture leading to material failure.

 

Material Requirements

 

he matrix must also meet certain requirements in order to first be suitable for FRPs and ensure a successful reinforcement of itself. The matrix must be able to properly saturate, and bond with the fibres within a suitable curing period. The matrix should preferably bond chemically with the fibre reinforcement for maximum adhesion. The matrix must also completely envelop the fibres to protect them from cuts and notches that would reduce their strength, and to transfer forces to the fibres. The fibres must also be kept separate from each other so that if failure occurs it is localized as much as possible, and if failure occurs the matrix must also debond from the fibre for similar reasons. Finally the matrix should be of a plastic that remains chemically and physically stable during and after the reinforcement and moulding processes. To be suitable as reinforcement material, fibre additives must increase the tensile strength and modulus of elasticity of the matrix and meet the following conditions; fibres must exceed critical fibre content; the strength and rigidity of fibres itself must exceed the strength and rigidity of the matrix alone; and there must be optimum bonding between fibres and matrix

 

Glass fibre material

 

Further information: Fiberglass

 

"Fiberglass reinforced plastics" or FRPs (commonly referred to simply as fiberglass) use textile grade glass fibres. These textile fibres are different from other forms of glass fibres used to deliberately trap air, for insulating applications (see glass wool). Textile glass fibres begin as varying combinations of SiO2, Al2O3, B2O3, CaO, or MgO in powder form. These mixtures are then heated through direct melting to temperatures around 1300 degrees Celsius, after which dies are used to extrude filaments of glass fibre in diameter ranging from 9 to 17 µm. These filaments are then wound into larger threads and spun onto bobbins for transportation and further processing. Glass fibre is by far the most popular means to reinforce plastic and thus enjoys a wealth of production processes, some of which are applicable to aramid and carbon fibres as well owing to their shared fibrous qualities.

 

Roving is a process where filaments are spun into larger diameter threads. These threads are then commonly used for woven reinforcing glass fabrics and mats, and in spray applications.

 

Fibre fabrics are web-form fabric reinforcing material that has both warp and weft directions. Fibre mats are web-form non-woven mats of glass fibres. Mats are manufactured in cut dimensions with chopped fibres, or in continuous mats using continuous fibres. Chopped fibre glass is used in processes where lengths of glass threads are cut between 3 and 26 mm, threads are then used in plastics most commonly intended for moulding processes. Glass fibre short strands are short 0.2–0.3 mm strands of glass fibres that are used to reinforce thermoplastics most commonly for injection moulding.

 

Carbon fiber

 

Main article: Carbon fibre

 

Carbon fibres are created when polyacrylonitrile fibres (PAN), Pitch resins, or Rayon are carbonized (through oxidation and thermal pyrolysis) at high temperatures. Through further processes of graphitizing or stretching the fibres strength or elasticity can be enhanced respectively. Carbon fibres are manufactured in diameters analogous to glass fibres with diameters ranging from 9 to 17 µm. These fibres wound into larger threads for transportation and further production processes. Further production processes include weaving or braiding into carbon fabrics, cloths and mats analogous to those described for glass that can then be used in actual reinforcements.

 

Aramid fiber material

 

Main article: Aramid

 

Aramid fibres are most commonly known as Kevlar, Nomex and Technora. Aramids are generally prepared by the reaction between an amine group and a carboxylic acid halide group (aramid); commonly this occurs when an aromatic polyamide is spun from a liquid concentration of sulphuric acid into a crystallized fibre. Fibres are then spun into larger threads in order to weave into large ropes or woven fabrics (Aramid).[1] Aramid fibres are manufactured with varying grades to based on varying qualities for strength and rigidity, so that the material can be somewhat tailored to specific design needs concerns, such as cutting the tough material during manufacture.

 

Example polymer and reinforcement combinations

 

Reinforcing material Most common matrix materials Properties improved
Glass fibres UP, EP, PA, PC, POM, PP, PBT, VE Strength, elasticity, heat resistance
Wood fibres PE, PP, ABS, HDPE, PLA Flexural strength, tensile modulus, tensile strength
Carbon and aramid fibres EP, UP, VE, PA Elasticity, tensile strength, compression strength, electrical strength.
Inorganic particulates Semicrystalline thermoplastics, UP Isotropic shrinkage, abrasion, compression strength

 

Applications

 

Glass-aramid-hybrid fabric (for high tension and compression)

 

Fibre-reinforced plastics are best suited for any design program that demands weight savings, precision engineering, finite tolerances, and the simplification of parts in both production and operation. A moulded polymer artefact is cheaper, faster, and easier to manufacture than cast aluminium or steel artefact, and maintains similar and sometimes better tolerances and material strengths.

 

Carbon-fibre-reinforced polymers

 

 

Rudder of Airbus A310

 

  • Advantages over a traditional rudder made from sheet aluminium are:
    • 25% reduction in weight
    • 95% reduction in components by combining parts and forms into simpler moulded parts.
    • Overall reduction in production and operational costs, economy of parts results in lower production costs and the weight savings create fuel savings that lower the operational costs of flying the aeroplane.

 

Glass-fibre-reinforced polymers

 

Engine intake manifolds are made from glass-fibre-reinforced PA 66.

 

  • Advantages this has over cast aluminium manifolds are:
    • Up to a 60% reduction in weight
    • Improved surface quality and aerodynamics
    • Reduction in components by combining parts and forms into simpler moulded shapes.

 

Automotive gas and clutch pedals made from glass-fibre-reinforced PA 66 (DWP 12–13)

 

  • Advantages over stamped aluminium are:
    • Pedals can be moulded as single units combining both pedals and mechanical linkages simplifying the production and operation of the design.
    • Fibres can be oriented to reinforce against specific stresses, increasing the durability and safety.

 

Aluminium windows, doors and facades get thermally insulated by using thermal insulation plastics made of glass fibre reinforced polyamide. In 1977 Ensinger GmbH produced first insulation profile for window systems.

 

Structural applications

 

FRP can be applied to strengthen the beams, columns, and slabs of buildings and bridges. It is possible to increase the strength of structural members even after they have been severely damaged due to loading conditions. In the case of damaged reinforced concrete members, this would first require the repair of the member by removing loose debris and filling in cavities and cracks with mortar or epoxy resin. Once the member is repaired, strengthening can be achieved through wet, hand lay-up of impregnating thefibre sheets with epoxy resin then applying them to the cleaned and prepared surfaces of the member.

 

Two techniques are typically adopted for the strengthening of beams, relating to the strength enhancement desired: flexural strengthening or shear strengthening. In many cases it may be necessary to provide both strength enhancements. For the flexural strengthening of a beam, FRP sheets or plates are applied to the tension face of the member (the bottom face for a simply supported member with applied top loading or gravity loading). Principal tensile fibres are oriented in the beam longitudinal axis, similar to its internal flexural steel reinforcement. This increases the beam strength and its stiffness (load required to cause unit deflection), however decreases the deflection capacity and ductility.

 

For the shear strengthening of a beam, the FRP is applied on the web (sides) of a member with fibres oriented transverse to the beam's longitudinal axis. Resisting of shear forces is achieved in a similar manner as internal steel stirrups, by bridging shear cracks that form under applied loading. FRP can be applied in several configurations, depending on the exposed faces of the member and the degree of strengthening desired, this includes: side bonding, U-wraps (U-jackets), and closed wraps (complete wraps). Side bonding involves applying FRP to the sides of the beam only. It provides the least amount of shear strengthening due to failures caused by de-bonding from the concrete surface at the FRP free edges. For U-wraps, the FRP is applied continuously in a 'U' shape around the sides and bottom (tension) face of the beam. If all faces of a beam are accessible, the use of closed wraps is desirable as they provide the most strength enhancement. Closed wrapping involves applying FRP around the entire perimeter of the member, such that there are no free ends and the typical failure mode is rupture of the fibres. For all wrap configurations, the FRP can be applied along the length of the member as a continuous sheet or as discrete strips, having a predefined minimum width and spacing.

 

Slabs may be strengthened by applying FRP strips at their bottom (tension) face. This will result in better flexural performance, since the tensile resistance of the slabs is supplemented by the tensile strength of FRP. In the case of beams and slabs, the effectiveness of FRP strengthening depends on the performance of the resin chosen for bonding. This is particularly an issue for shear strengthening using side bonding or U-wraps. Columns are typically wrapped with FRP around their perimeter, as with closed or complete wrapping. This not only results in higher shear resistance, but more crucial for column design, it results in increased compressive strength under axial loading. The FRP wrap works by restraining the lateral expansion of the column, which can enhance confinement in a similar manner as spiral reinforcement does for the column core.

 

Elevator cable

 

In June 2013, KONE elevator company announced Ultrarope for use as a replacement for steel cables in elevators. It seals the carbon fibers in high-friction polymer. Unlike steel cable, Ultrarope was designed for buildings that require up to 1,000 meters of lift. Steel elevators top out at 500 meters. The company estimated that in a 500-meter-high building, an elevator would use 15 per cent less electrical power than a steel-cabled version. As of June 2013, the product had passed all European Union and US certification tests.

 

Design considerations

 

FRP is used in designs that require a measure of strength or modulus of elasticity that non-reinforced plastics and other material choices are either ill suited for mechanically or economically. This means that the primary design consideration for using FRP is to ensure that the material is used economically and in a manner that takes advantage of its structural enhancements specifically. This is however not always the case, the orientation of fibres also creates a material weakness perpendicular to the fibres. Thus the use of fibre reinforcement and their orientation affects the strength, rigidity, and elasticity of a final form and hence the operation of the final product itself. Orienting the direction of fibres either, unidirectional, 2-dimensionally, or 3-dimensionally during production affects the degree of strength, flexibility, and elasticity of the final product. Fibres oriented in the direction of forces display greater resistance to distortion from these forces and vice versa, thus areas of a product that must withstand forces will be reinforced with fibres in the same direction, and areas that require flexibility, such as natural hinges, will use fibres in a perpendicular direction to forces. Using more dimensions avoids this either or scenario and creates objects that seek to avoid any specific weak points due to the unidirectional orientation of fibres. The properties of strength, flexibility and elasticity can also be magnified or diminished through the geometric shape and design of the final product. These include such design consideration such as ensuring proper wall thickness and creating multifunctional geometric shapes that can be moulding as single pieces, creating shapes that have more material and structural integrity by reducing joints, connections, and hardware.

 

Disposal and recycling concerns

 

As a subset of plastic FR plastics are liable to a number of the issues and concerns in plastic waste disposal and recycling. Plastics pose a particular challenge in recycling because they are derived from polymers and monomers that often cannot be separated and returned to their virgin states, for this reason not all plastics can be recycled for re-use, in fact some estimates claim only 20% to 30% of plastics can be recycled at all. Fibre-reinforced plastics and their matrices share these disposal and environmental concerns. In addition to these concerns, the fact that the fibres themselves are difficult to remove from the matrix and preserve for re-use means FRP's amplify these challenges. FRP's are inherently difficult to separate into base materials, that is into fibre and matrix, and the matrix into separate usable plastics, polymers, and monomers. These are all concerns for environmentally informed design today. Plastics do often offer savings in energy and economic savings in comparison to other materials. In addition, with the advent of new more environmentally friendly matrices such as bioplastics and UV-degradable plastics, FRP will gain environmental sensitivity.

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Funeral Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Funeral Septic Tanks, Cubic Septic Tank, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Septic #Septic tank #Composite #Composite Manhole cover #manhole #manhole cover #GRP #GRP tank #Polyethylene #Polyethylene tank #SMC #SMC tank #Cubic modular tank #Composite tank #Storage tank #Water tank #Composite fitting

 

Matin Technical Design Company, Design, Manufactur, Sale, Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Cover, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Funeral Septic tank, Polyethylene septic tank, Sheet Moulding Compound, SMC tank, Water tank, Storage tank, Funeral Septic Tanks, Cubic Septic Tank, Polyethylene Tank, GRVE Tank, Fiberglass Composite

Composite material

 

Composite material

From Wikipedia, the free encyclopedia

 

 

Composites are formed by combining materials together to form an overall structure that is better than the sum of the individual components

 

A composite material (also called a composite material or shortened to composite which is the common name) is a material made from two or more constituent materials with significantly different physical or chemical properties that, when combined, produce a material with characteristics different from the individual components. The individual components remain separate and distinct within the finished structure. The new material may be preferred for many reasons: common examples include materials which are stronger, lighter, or less expensive when compared to traditional materials. More recently, researchers have also begun to actively include sensing, actuation, computation and communication into composites, which are known as Robotic Materials.

 

 

 

Typical engineered composite materials include:

 

 

 

·         mortars, concrete

 

 

 

·         Reinforced plastics, such as fiber-reinforced polymer

 

 

 

·         Metal composites

 

 

 

·         Ceramic composites (composite ceramic and metal matrices)

 

composite materials are generally used for buildings, bridges, and structures such as boat hulls, swimming pool panels, race car bodies, shower stalls, bathtubs, storage tanks, imitation granite and cultured marble sinks and countertops. The most advanced examples perform routinely on spacecraft and aircraft in demanding environments.

 

History

 

The earliest man-made composite materials were straw and mud combined to form bricks for building construction. Ancient brick-making was documented by Egyptian tomb paintings.

 

Wattle and daub is one of the oldest man-made composite materials, at over 6000 years old. Concrete is also a composite material, and is used more than any other man-made material in the world. As of 2006, about 7.5 billion cubic metres of concrete are made each year—more than one cubic metre for every person on Earth.

 

·         Woody plants, both true wood from trees and such plants as palms and bamboo, yield natural composites that were used prehistorically by mankind and are still used widely in construction and scaffolding.

 

·         Plywood 3400 BC by the Ancient Mesopotamians; gluing wood at different angles gives better properties than natural wood

 

 

 

·         Cartonnage layers of linen or papyrus soaked in plaster dates to the First Intermediate Period of Egypt c. 2181–2055 BC and was used for death masks

 

 

 

·         Cob (material) Mud Bricks, or Mud Walls, (using mud (clay) with straw or gravel as a binder) have been used for thousands of years.

 

 

 

·         Concrete was described by Vitruvius, writing around 25 BC in his Ten Books on Architecture, distinguished types of aggregate appropriate for the preparation of lime mortars. For structural mortars, he recommended pozzolana, which were volcanic sands from the sandlike beds of Pozzuoli brownish-yellow-gray in colour near Naples and reddish-brown at Rome. Vitruvius specifies a ratio of 1 part lime to 3 parts pozzolana for cements used in buildings and a 1:2 ratio of lime to pulvis Puteolanus for underwater work, essentially the same ratio mixed today for concrete used at sea. Natural cement-stones, after burning, produced cements used in concretes from post-Roman times into the 20th century, with some properties superior to manufactured Portland cement.

 

 

 

·         Papier-mâché, a composite of paper and glue, has been used for hundreds of years

 

 

 

·         The first artificial fibre reinforced plastic was bakelite which dates to 1907, although natural polymers such as shellac predate it

 

 

 

·         One of the most common and familiar composite is fiberglass, in which small glass fiber are embedded within a polymeric material (normally an epoxy or polyester). The glass fiber is relatively strong and stiff (but also brittle), whereas the polymer is ductile (but also weak and flexible). Thus the resulting fiberglass is relatively stiff, strong, flexible, and ductile.

 

 

 

 

 

Concrete is the most common artificial composite material of all and typically consists of loose stones (aggregate) held with a matrix of cement. Concrete is an inexpensive material, and will not compress or shatter even under quite a large compressive force. However, concrete cannot survive tensile loading (i.e., if stretched it will quickly break apart). Therefore, to give concrete the ability to resist being stretched, steel bars, which can resist high stretching forces, are often added to concrete to form reinforced concrete.

 

Fibre-reinforced polymers or FRPs include carbon-fiber-reinforced polymer or CFRP, and glass-reinforced plastic or GRP. If classified by matrix then there are thermoplastic composites, short fiber thermoplastics, long fibre thermoplastics or long fibre-reinforced thermoplastics. There are numerous thermoset composites, including paper composite panels. Many advanced systems usually incorporate aramid fibre and carbon fibre in an epoxy resin matrix.

 

Shape memory polymer composites are high-performance composites, formulated using fibre or fabric reinforcement and shape memory polymer resin as the matrix. Since a shape memory polymer resin is used as the matrix, these composites have the ability to be easily manipulated into various configurations when they are heated above their activation temperatures and will exhibit high strength and stiffness at lower temperatures. They can also be reheated and reshaped repeatedly without losing their material properties. These composites are ideal for applications such as lightweight, rigid, deployable structures; rapid manufacturing; and dynamic reinforcement.

 

High strain composites are another type of high-performance composites that are designed to perform in a high deformation setting and are often used in deployable systems where structural flexing is advantageous. Although high strain composites exhibit many similarities to shape memory polymers, their performance is generally dependent on the fiber layout as opposed to the resin content of the matrix.

 

composites can also use metal fibres reinforcing other metals, as in metal matrix composites (MMC) or ceramic matrix composites(CMC), which includes bone (hydroxyapatite reinforced with collagen fibres), cermet (ceramic and metal) and concrete. Ceramic matrix composites are built primarily for fracture toughness, not for strength.

 

Organic matrix/ceramic aggregate composites include asphalt concrete, polymer concrete, mastic asphalt, mastic roller hybrid, dental composite, syntactic foam and mother of pearl. Chobham armour is a special type of composite armour used in military applications.

 

Additionally, thermoplastic composite materials can be formulated with specific metal powders resulting in materials with a density range from 2 g/cm³ to 11 g/cm³ (same density as lead). The most common name for this type of material is "high gravity compound" (HGC), although "lead replacement" is also used. These materials can be used in place of traditional materials such as aluminium, stainless steel, brass, bronze, copper, lead, and even tungsten in weighting, balancing (for example, modifying the centre of gravity of a tennisracquet), vibration damping, and radiation shielding applications. High density composites are an economically viable option when certain materials are deemed hazardous and are banned (such as lead) or when secondary operations costs (such as machining, finishing, or coating) are a factor.

 

A sandwich-structured composite is a special class of composite material that is fabricated by attaching two thin but stiff skins to a lightweight but thick core. The core material is normally low strength material, but its higher thickness provides the sandwich composite with high bending stiffness with overall low density.

 

Wood is a naturally occurring composite comprising cellulose fibres in a lignin and hemicellulose matrix. Engineered wood includes a wide variety of different products such as wood fibre board, plywood, oriented strand board, wood plastic composite (recycled wood fibre in polyethylene matrix), Pykrete (sawdust in ice matrix), Plastic-impregnated or laminated paper or textiles, Arborite, Formica (plastic) andMicarta. Other engineered laminate composites, such as Mallite, use a central core of end grain balsa wood, bonded to surface skins of light alloy or GRP. These generate low-weight, high rigidity materials.

 

Products

 

Fiber-reinforced composite materials have gained popularity (despite their generally high cost) in high-performance products that need to be lightweight, yet strong enough to take harsh loading conditions such as aerospace components (tails, wings, fuselages, propellers), boat and scull hulls, bicycle frames and racing car bodies. Other uses include fishing rods, storage tanks, swimming pool panels, andbaseball bats. The new Boeing 787 structure including the wings and fuselage is composed largely of composites. Composite materials are also becoming more common in the realm of orthopedic surgery.And It is the most common hockey stick material.

 

Carbon composite is a key material in today's launch vehicles and heat shields for the re-entry phase of spacecraft. It is widely used in solar panel substrates, antenna reflectors and yokes of spacecraft. It is also used in payload adapters, inter-stage structures and heat shields of launch vehicles. Furthermore, disk brake systems of airplanes and racing cars are using carbon/carbon material, and the composite material with carbon fibers and silicon carbide matrix has been introduced in luxury vehicles and sports cars.

 

In 2006, a fiber-reinforced composite pool panel was introduced for in-ground swimming pools, residential as well as commercial, as a non-corrosive alternative to galvanized steel.

 

In 2007, an all-composite military Humvee was introduced by TPI composites Inc and Armor Holdings Inc, the first all-composite military vehicle. By using composites the vehicle is lighter, allowing higher payloads. In 2008, carbon fiber and DuPont Kevlar (five times stronger than steel) were combined with enhanced thermoset resins to make military transit cases by ECS Composites creating 30-percent lighter cases with high strength.

 

Pipes and fittings for various purpose like transportation of potable water, fire-fighting, irrigation, seawater, desalinated water, chemical and industrial waste, and sewage are now manufactured in glass-reinforced plastics (GRP).

 

Overview

 

 

 

Composites are made up of individual materials referred to as constituent materials. There are two main categories of constituent materials: matrix and reinforcement. At least one portion of each type is required. The matrix material surrounds and supports the reinforcement materials by maintaining their relative positions. The reinforcements impart their special mechanical and physical properties to enhance the matrix properties. A synergism produces material properties unavailable from the individual constituent materials, while the wide variety of matrix and strengthening materials allows the designer of the product or structure to choose an optimum combination.

 

Engineered composite materials must be formed to shape. The matrix material can be introduced to the reinforcement before or after the reinforcement material is placed into the mould cavity or onto the mould surface. The matrix material experiences a melding event, after which the part shape is essentially set. Depending upon the nature of the matrix material, this melding event can occur in various ways such as chemical polymerization or solidification from the melted state.

 

A variety of moulding methods can be used according to the end-item design requirements. The principal factors impacting the methodology are the natures of the chosen matrix and reinforcement materials. Another important factor is the gross quantity of material to be produced. Large quantities can be used to justify high capital expenditures for rapid and automated manufacturing technology. Small production quantities are accommodated with lower capital expenditures but higher labour and tooling costs at a correspondingly slower rate.

 

Many commercially produced composites use a polymer matrix material often called a resin solution. There are many different polymers available depending upon the starting raw ingredients. There are several broad categories, each with numerous variations. The most common are known as polyester, vinylester, epoxy, phenolic, polyimide, polyamide, polypropylene, PEEK, and others. The reinforcement materials are often fibres but also commonly ground minerals. The various methods described below have been developed to reduce the resin content of the final product, or the fibre content is increased. As a rule of thumb, lay up results in a product containing 60% resin and 40% fibre, whereas vacuum infusion gives a final product with 40% resin and 60% fiber content. The strength of the product is greatly dependent on this ratio.

 

Martin Hubbe and Lucian A Lucia consider wood to be a natural composite of cellulose fibres in a matrix of lignin.

 

Constituents

 

 

 

Polymers are common matrices (especially used for fiber reinforced plastics). Road surfaces are often made from asphalt concrete which uses bitumen as a matrix. Mud (wattle and daub) has seen extensive use. Typically, most common polymer-based composite materials, including fiberglass, carbon fiber, and Kevlar, include at least two parts, the substrate and the resin.

 

Polyester resin tends to have yellowish tint, and is suitable for most backyard projects. Its weaknesses are that it is UV sensitive and can tend to degrade over time, and thus generally is also coated to help preserve it. It is often used in the making of surfboards and for marine applications. Its hardener is a peroxide, often MEKP (methyl ethyl ketone peroxide). When the peroxide is mixed with the resin, it decomposes to generate free radicals, which initiate the curing reaction. Hardeners in these systems are commonly called catalysts, but since they do not re-appear unchanged at the end of the reaction, they do not fit the strictest chemical definition of a catalyst.

 

Vinylester resin tends to have a purplish to bluish to greenish tint. This resin has lower viscosity than polyester resin, and is more transparent. This resin is often billed as being fuel resistant, but will melt in contact with gasoline. This resin tends to be more resistant over time to degradation than polyester resin, and is more flexible. It uses the same hardeners as polyester resin (at a similar mix ratio) and the cost is approximately the same.

 

Epoxy resin is almost totally transparent when cured. In the aerospace industry, epoxy is used as a structural matrix material or as a structural glue.

 

Shape memory polymer (SMP) resins have varying visual characteristics depending on their formulation. These resins may be epoxy-based, which can be used for auto body and outdoor equipment repairs; cyanate-ester-based, which are used in space applications; and acrylate-based, which can be used in very cold temperature applications, such as for sensors that indicate whether perishable goods have warmed above a certain maximum temperature. These resins are unique in that their shape can be repeatedly changed by heating above their glass transition temperature (Tg). When heated, they become flexible and elastic, allowing for easy configuration. Once they are cooled, they will maintain their new shape. The resins will return to their original shapes when they are reheated above their Tg. The advantage of shape memory polymer resins is that they can be shaped and reshaped repeatedly without losing their material properties. These resins can be used in fabricating shape memory composites.

 

Inorganic

 

Cement (concrete), metals, ceramics and sometimes glasses are employed. Unusual matrices such as ice are sometime proposed as in pykecrete.

 

Reinforcements[

 

Fiber

 

 

 

Differences in the way the fibers are laid out give different strengths and ease of manufacture

 

Reinforcement usually adds rigidity and greatly impedes crack propagation. Thin fibers can have very high strength, and provided they are mechanically well attached to the matrix they can greatly improve the composite's overall properties.

 

Fiber-reinforced composite materials can be divided into two main categories normally referred to as short fiber-reinforced materials and continuous fiber-reinforced materials. Continuous reinforced materials will often constitute a layered or laminated structure. The woven and continuous fibre styles are typically available in a variety of forms, being pre-impregnated with the given matrix (resin), dry, uni-directional tapes of various widths, plain weave, harness satins, braided, and stitched.

 

The short and long fibers are typically employed in compression moulding and sheet moulding operations. These come in the form of flakes, chips, and random mate (which can also be made from a continuous fibre laid in random fashion until the desired thickness of the ply / laminate is achieved).

 

Common fibers used for reinforcement include glass fibers, carbon fibers, cellulose (wood/paper fiber and straw) and high strength polymers for example aramid. Silicon carbide fibers are used for some high temperature applications.

 

Other reinforcement

 

Concrete uses aggregate, and reinforced concrete additionally uses steel bars (rebar) to tension the concrete. Steel mesh or wires are also used in some glass and plastic products.

 

Cores

 

Many composite layup designs also include a co-curing or post-curing of the prepreg with various other media, such as honeycomb or foam. This is commonly called a sandwich structure. This is a more common layup for the manufacture of radomes, doors, cowlings, or non-structural parts.

 

Open-and-closed cell-structured-foams like polyvinylchloride, polyurethane, polyethylene or polystyrene foams, balsa wood, syntactic foams, and honeycombs are commonly used core materials. Open- and closed-cell metal foam can also be used as core materials.

 

Fabrication methods

 

Fabrication of composite materials is accomplished by a wide variety of techniques, including:

 

·         Advanced fiber placement (Automated fiber placement)

 

·         Tailored fiber placement

 

·         Fiberglass spray lay-up process

 

·         Filament winding

 

·         Lanxide process

 

·         Tufting

 

·         Z-pinning

 

Composite fabrication usually involves wetting, mixing or saturating the reinforcement with the matrix, and then causing the matrix to bind together (with heat or a chemical reaction) into a rigid structure. The operation is usually done in an open or closed forming mold, but the order and ways of introducing the ingredients varies considerably.

 

Mold overview

 

Within a mold, the reinforcing and matrix materials are combined, compacted, and cured (processed) to undergo a melding event. After the melding event, the part shape is essentially set, although it can deform under certain process conditions. For a thermoset polymeric matrix material, the melding event is a curing reaction that is initiated by the application of additional heat or chemical reactivity such as an organic peroxide. For a thermoplastic polymeric matrix material, the melding event is a solidification from the melted state. For a metal matrix material such as titanium foil, the melding event is a fusing at high pressure and a temperature near the melting point.

 

For many moulding methods, it is convenient to refer to one mould piece as a "lower" mould and another mould piece as an "upper" mould. Lower and upper refer to the different faces of the moulded panel, not the mould's configuration in space. In this convention, there is always a lower mould, and sometimes an upper mould. Part construction begins by applying materials to the lower mould. Lower mould and upper mould are more generalized descriptors than more common and specific terms such as male side, female side, a-side, b-side, tool side, bowl, hat, mandrel, etc. Continuous manufacturing uses a different nomenclature.

 

The moulded product is often referred to as a panel. For certain geometries and material combinations, it can be referred to as a casting. For certain continuous processes, it can be referred to as a profile.

 

Vacuum bag moulding

 

Vacuum bag moulding uses a flexible film to enclose the part and seal it from outside air. Vacuum bag material is available in a tube shape or a sheet of material. A vacuum is then drawn on the vacuum bag and atmospheric pressure compresses the part during the cure. When a tube shaped bag is used, the entire part can be enclosed within the bag. When using sheet bagging materials, the edges of the vacuum bag are sealed against the edges of the mould surface to enclose the part against an air-tight mould. When bagged in this way, the lower mold is a rigid structure and the upper surface of the part is formed by the flexible membrane vacuum bag. The flexible membrane can be a reusable silicone material or an extruded polymer film. After sealing the part inside the vacuum bag, a vacuum is drawn on the part (and held) during cure. This process can be performed at either ambient or elevated temperature with ambient atmospheric pressure acting upon the vacuum bag. A vacuum pump is typically used to draw a vacuum. An economical method of drawing a vacuum is with a venturi vacuum and air compressor.

 

A vacuum bag is a bag made of strong rubber-coated fabric or a polymer film used to compress the part during cure or hardening. In some applications the bag encloses the entire material, or in other applications a mold is used to form one face of the laminate with the bag being a single layer to seal to the outer edge of the mold face. When using a tube shaped bag, the ends of the bag are sealed and the air is drawn out of the bag through a nipple using a vacuum pump. As a result, uniform pressure approaching oneatmosphere is applied to the surfaces of the object inside the bag, holding parts together while the adhesive cures. The entire bag may be placed in a temperature-controlled oven, oil bath or water bath and gently heated to accelerate curing.

 

Vacuum bagging is widely used in the composites industry as well. Carbon fiber fabric and fiberglass, along with resins and epoxies are common materials laminated together with a vacuum bag operation.

 

Woodworking applications

 

In commercial woodworking facilities, vacuum bags are used to laminate curved and irregular shaped workpieces.

 

Typically, polyurethane or vinyl materials are used to make the bag. A tube shaped bag is open at both ends. The piece, or pieces to be glued are placed into the bag and the ends sealed. One method of sealing the open ends of the bag is by placing a clamp on each end of the bag. A plastic rod is laid across the end of the bag, the bag is then folded over the rod. A plastic sleeve with an opening in it, is then snapped over the rod. This procedure forms a seal at both ends of the bag, when the vacuum is ready to be drawn.

 

A "platen" is sometimes used inside the bag for the piece being glued to lie on. The platen has a series of small slots cut into it, to allow the air under it to be evacuated. The platen must have rounded edges and corners to prevent the vacuum from tearing the bag.

 

When a curved part is to be glued in a vacuum bag, it is important that the pieces being glued be placed over a solidly built form, or have an air bladder placed under the form. This air bladder has access to "free air" outside the bag. It is used to create an equal pressure under the form, preventing it from being crushed.

 

Pressure bag moulding

 

This process is related to vacuum bag molding in exactly the same way as it sounds. A solid female mold is used along with a flexible male mold. The reinforcement is placed inside the female mold with just enough resin to allow the fabric to stick in place (wet lay up). A measured amount of resin is then liberally brushed indiscriminately into the mold and the mold is then clamped to a machine that contains the male flexible mold. The flexible male membrane is then inflated with heated compressed air or possibly steam. The female mold can also be heated. Excess resin is forced out along with trapped air. This process is extensively used in the production of composite helmets due to the lower cost of unskilled labor. Cycle times for a helmet bag moulding machine vary from 20 to 45 minutes, but the finished shells require no further curing if the molds are heated.

 

Autoclave moulding

 

A process using a two-sided mould set that forms both surfaces of the panel. On the lower side is a rigid mould and on the upper side is a flexible membrane made from silicone or an extruded polymer film such as nylon. Reinforcement materials can be placed manually or robotically. They include continuous fibre forms fashioned into textile constructions. Most often, they are pre-impregnated with the resin in the form of prepreg fabrics or unidirectional tapes. In some instances, a resin film is placed upon the lower mould and dry reinforcement is placed above. The upper mould is installed and vacuum is applied to the mould cavity. The assembly is placed into an autoclave. This process is generally performed at both elevated pressure and elevated temperature. The use of elevated pressure facilitates a high fibre volume fraction and low void content for maximum structural efficiency.

 

Resin transfer moulding (RTM)

 

RTM is a process using a rigid two-sided mould set that forms both surfaces of the panel. The mould is typically constructed from aluminum or steel, but composite molds are sometimes used. The two sides fit together to produce a mould cavity. The distinguishing feature of resin transfer moulding is that the reinforcement materials are placed into this cavity and the mould set is closed prior to the introduction of matrix material. Resin transfer moulding includes numerous varieties which differ in the mechanics of how the resin is introduced to the reinforcement in the mould cavity. These variations include everything from the RTM methods used in out of autoclave composite manufacturing for high-tech aerospace components to vacuum infusion (for resin infusion see also boat building) to vacuum assisted resin transfer moulding (VARTM). This process can be performed at either ambient or elevated temperature.

 

Other fabrication methods

 

Other types of fabrication include press moulding, transfer moulding, pultrusion moulding, filament winding, casting, centrifugal casting, continuous casting and slip forming. There are also forming capabilities including CNC filament winding, vacuum infusion, wet lay-up, compression moulding, and thermoplastic moulding, to name a few. The use of curing ovens and paint booths is also needed for some projects.

 

Finishing methods

 

The finishing of the composite parts is also critical in the final design. Many of these finishes will include rain-erosion coatings or polyurethane coatings.

 

Tooling

 

The mold and mold inserts are referred to as "tooling." The mold/tooling can be constructed from a variety of materials. Tooling materials include invar, steel, aluminium, reinforced silicone rubber, nickel, and carbon fiber. Selection of the tooling material is typically based on, but not limited to, the coefficient of thermal expansion, expected number of cycles, end item tolerance, desired or required surface condition, method of cure, glass transition temperature of the material being moulded, moulding method, matrix, cost and a variety of other considerations.

 

Physical properties

 

The physical properties of composite materials are generally not isotropic (independent of direction of applied force) in nature, but rather are typically anisotropic (different depending on the direction of the applied force or load). For instance, the stiffness of a composite panel will often depend upon the orientation of the applied forces and/or moments. Panel stiffness is also dependent on the design of the panel. For instance, the fibre reinforcement and matrix used, the method of panel build, thermoset versus thermoplastic, type of weave, and orientation of fibre axis to the primary force.

 

In contrast, isotropic materials (for example, aluminium or steel), in standard wrought forms, typically have the same stiffness regardless of the directional orientation of the applied forces and/or moments.

 

The relationship between forces/moments and strains/curvatures for an isotropic material can be described with the following material properties: Young's Modulus, the shear Modulus and the Poisson's ratio, in relatively simple mathematical relationships. For the anisotropic material, it requires the mathematics of a second order tensor and up to 21 material property constants. For the special case of orthogonal isotropy, there are three different material property constants for each of Young's Modulus, Shear Modulus and Poisson's ratio—a total of 9 constants to describe the relationship between forces/moments and strains/curvatures.

 

Techniques that take advantage of the anisotropic properties of the materials include mortise and tenon joints (in natural composites such as wood) and Pi Joints in synthetic composites.

 

Failure

 

Shock, impact, or repeated cyclic stresses can cause the laminate to separate at the interface between two layers, a condition known as delamination. Individual fibres can separate from the matrix e.g. fibre pull-out.

 

Composites can fail on the microscopic or macroscopic scale. Compression failures can occur at both the macro scale or at each individual reinforcing fiber in compression buckling. Tension failures can be net section failures of the part or degradation of the composite at a microscopic scale where one or more of the layers in the composite fail in tension of the matrix or failure of the bond between the matrix and fibers.

 

Some composites are brittle and have little reserve strength beyond the initial onset of failure while others may have large deformations and have reserve energy absorbing capacity past the onset of damage. The variations in fibers and matrices that are available and the mixtures that can be made with blends leave a very broad range of properties that can be designed into a composite structure. The best known failure of a brittle ceramic matrix composite occurred when the carbon-carbon composite tile on the leading edge of the wing of the Space Shuttle Columbia fractured when impacted during take-off. It led to catastrophic break-up of the vehicle when it re-entered the Earth's atmosphere on 1 February 2003.

 

Compared to metals, composites have relatively poor bearing strength.

 

Testing

 

To aid in predicting and preventing failures, composites are tested before and after construction. Pre-construction testing may use finite element analysis (FEA) for ply-by-ply analysis of curved surfaces and predicting wrinkling, crimping and dimpling of composites. Materials may be tested during manufacturing and after construction through several nondestructive methods including ultrasonics, thermography, shearography and X-ray radiography, and laser bond inspection for NDT of relative bond strength integrity in a localized area.

 

 


 Other related Links:

 

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Cubic Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

 

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Cubic GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Cubic Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

 

 

 

 

 

Polymer

Polymer

From Wikipedia, the free encyclopedia
Appearance of real linear polymer chains as recorded using an atomic force microscope on a surface, under liquid medium. Chain contour length for this polymer is ~204 nm; thickness is ~0.4 nm.
IUPAC definition

Substance composed of macromolecules.

Note: Applicable to substance macromolecular in nature like cross-linked
systems that can be considered as one macromolecule.

A polymer is a large molecule, or macromolecule, composed of many repeated subunits. Because of their broad range of properties, both synthetic and natural polymers play an essential and ubiquitous role in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known asmonomers. Their consequently large molecular mass relative to small molecule compounds produces unique physical properties, includingtoughness, viscoelasticity, and a tendency to form glasses and semicrystalline structures rather than crystals.

The term "polymer" derives from the ancient Greek word πολύς (polus, meaning "many, much") and μέρος (meros, meaning "parts"), and refers to a molecule whose structure is composed of multiple repeating units, from which originates a characteristic of high relative molecular mass and attendant properties. The units composing polymers derive, actually or conceptually, from molecules of low relative molecular mass. The term was coined in 1833 by Jöns Jacob Berzelius, though with a definition distinct from the modern IUPAC definition. The modern concept of polymers as covalently bonded macromolecular structures was proposed in 1920 by Hermann Staudinger, who spent the next decade finding experimental evidence for this hypothesis.

Polymers are studied in the fields of biophysics and macromolecular science, and polymer science (which includes polymer chemistry andpolymer physics). Historically, products arising from the linkage of repeating units by covalent chemical bonds have been the primary focus of polymer science; emerging important areas of the science now focus on non-covalent links. Polyisoprene oflatex rubber and the polystyrene of styrofoam are examples of polymeric natural/biological and synthetic polymers, respectively. In biological contexts, essentially all biological macromolecules—i.e., proteins(polyamides), nucleic acids (polynucleotides), and polysaccharides—are purely polymeric, or are composed in large part of polymeric components—e.g., isoprenylated/lipid-modified glycoproteins, where small lipidic molecules and oligosaccharide modifications occur on the polyamide backbone of the protein.

 

Common example

Polymers are of two types:

  • Natural polymeric materials such as shellac, amber, wool, silk and natural rubber have been used for centuries. A variety of other natural polymers exist, such as cellulose, which is the main constituent of wood and paper.
  • The list of synthetic polymers includes synthetic rubber, phenol formaldehyde resin (or Bakelite), neoprene, nylon, polyvinyl chloride (PVC or vinyl), polystyrene,polyethylene, polypropylene, polyacrylonitrile, PVB, silicone, and many more.

Most commonly, the continuously linked backbone of a polymer used for the preparation of plastics consists mainly of carbon atoms. A simple example is polyethylene ('polythene' in British English), whose repeating unit is based on ethylene monomer. However, other structures do exist; for example, elements such as silicon form familiar materials such as silicones, examples being Silly Putty and waterproof plumbing sealant. Oxygen is also commonly present in polymer backbones, such as those of polyethylene glycol, polysaccharides (in glycosidic bonds), and DNA (in phosphodiester bonds).

Polymer synthesis

The repeating unit of the polymer polypropylene

Polymerization is the process of combining many small molecules known as monomers into a covalently bonded chain or network. During the polymerization process, some chemical groups may be lost from each monomer. This is the case, for example, in the polymerization ofPET polyester. The monomers are terephthalic acid (HOOC-C6H4-COOH) and ethylene glycol (HO-CH2- CH2-OH) but the repeating unit is -OC-C6H4-COO-CH2-CH2-O-, which corresponds to the combination of the two monomers with the loss of two water molecules. The distinct piece of each monomer that is incorporated into the polymer is known as a repeat unit or monomer residue.

Laboratory synthetic methods are generally divided into two categories, step-growth polymerization and chain-growth polymerization.The essential difference between the two is that in chain growth polymerization, monomers are added to the chain one at a time only, such as in polyethylene, whereas in step-growth polymerization chains of monomers may combine with one another directly, such as in polyester. However, some newer methods such as plasma polymerization do not fit neatly into either category. Synthetic polymerization reactions may be carried out with or without a catalyst. Laboratory synthesis of biopolymers, especially of proteins, is an area of intensive research.

Biological synthesis

Microstructure of part of a DNA double helix biopolymer

There are three main classes of biopolymers: polysaccharides, polypeptides, and polynucleotides. In living cells, they may be synthesized by enzyme-mediated processes, such as the formation of DNA catalyzed by DNA polymerase. The synthesis of proteins involves multiple enzyme-mediated processes to transcribe genetic information from the DNA to RNA and subsequently translate that information to synthesize the specified protein from amino acids. The protein may be modified further following translation in order to provide appropriate structure and functioning. There are other biopolymers such as rubber, suberin, melanin and lignin.

Modification of natural polymers

Naturally occurring polymers such as cotton, starch and rubber were familiar materials for years before synthetic polymers such as polyetheneand perspex appeared on the market. Many commercially important polymers are synthesized by chemical modification of naturally occurring polymers. Prominent examples include the reaction of nitric acid and cellulose to form nitrocellulose and the formation of vulcanized rubber by heating natural rubber in the presence of sulfur. Ways in which polymers can be modified include oxidation, cross-linking and end-capping.

Especially in the production of polymers, the gas separation by membranes has acquired increasing importance in the petrochemical industry and is now a relatively well-established unit operation. The process of polymer degassing is necessary to suit polymer for extrusion and pelletizing, increasing safety, environmental, and product quality aspects. Nitrogen is generally used for this purpose, resulting in a vent gas primarily composed of monomers and nitrogen.

Polymer properties

Polymer properties are broadly divided into several classes based on the scale at which the property is defined as well as upon its physical basis.The most basic property of a polymer is the identity of its constituent monomers. A second set of properties, known as microstructure, essentially describe the arrangement of these monomers within the polymer at the scale of a single chain. These basic structural properties play a major role in determining bulk physical properties of the polymer, which describe how the polymer behaves as a continuous macroscopic material. Chemical properties, at the nano-scale, describe how the chains interact through various physical forces. At the macro-scale, they describe how the bulk polymer interacts with other chemicals and solvents.

Monomers and repeat units

The identity of the repeat units (monomer residues, also known as "mers") comprising a polymer is its first and most important attribute. Polymer nomenclature is generally based upon the type of monomer residues comprising the polymer. Polymers that contain only a single type of repeat unit are known as homopolymers, while polymers containing a mixture of repeat units are known as copolymers. Poly(styrene), for example, is composed only of styrene monomer residues, and is therefore classified as a homopolymer. Ethylene-vinyl acetate, on the other hand, contains more than one variety of repeat unit and is thus a copolymer. Some biological polymers are composed of a variety of different but structurally related monomer residues; for example, polynucleotides such as DNA are composed of a variety of nucleotide subunits.

A polymer molecule containing ionizable subunits is known as a polyelectrolyte or ionomer.

Microstructure

The microstructure of a polymer (sometimes called configuration) relates to the physical arrangement of monomer residues along the backbone of the chain.These are the elements of polymer structure that require the breaking of a covalent bond in order to change. Structure has a strong influence on the other properties of a polymer. For example, two samples of natural rubber may exhibit different durability, even though their molecules comprise the same monomers.

Polymer architectur

 
Branch point in a polymer

An important microstructural feature of a polymer is its architecture and shape, which relates to the way branch points lead to a deviation from a simple linear chain. A branched polymer molecule is composed of a main chain with one or more substituent side chains or branches. Types of branched polymers include star polymers, comb polymers, brush polymers, dendronized polymers, ladders, anddendrimers. There exist also two-dimensional polymers which are composed of topologically planar repeat units. A polymer's architecture affects many of its physical properties including, but not limited to, solution viscosity, melt viscosity, solubility in various solvents, glass transition temperature and the size of individual polymer coils in solution. A variety of techniques may be employed for the synthesis of a polymeric material with a range of architectures, for example Living polymerization.

Chain length

The physical properties of a polymer are strongly dependent on the size or length of the polymer chain. For example, as chain length is increased, melting and boiling temperatures increase quickly. Impact resistance also tends to increase with chain length, as does the viscosity, or resistance to flow, of the polymer in its molten state. Melt viscosity \eta \, is related to polymer chain length Z roughly as \eta \, ~ Z3.2, so that a tenfold increase in polymer chain length results in a viscosity increase of over 1000 times.Increasing chain length furthermore tends to decrease chain mobility, increase strength and toughness, and increase the glass transition temperature (Tg). This is a result of the increase in chain interactions such as Van der Waals attractions and entanglements that come with increased chain length. These interactions tend to fix the individual chains more strongly in position and resist deformations and matrix breakup, both at higher stresses and higher temperatures.

A common means of expressing the length of a chain is the degree of polymerization, which quantifies the number of monomers incorporated into the chain. As with other molecules, a polymer's size may also be expressed in terms of molecular weight. Since synthetic polymerization techniques typically yield a polymer product including a range of molecular weights, the weight is often expressed statistically to describe the distribution of chain lengths present in the same. Common examples are the number average molecular weight and weight average molecular weight. The ratio of these two values is the polydispersity index, commonly used to express the "width" of the molecular weight distribution. A final measurement is contour length, which can be understood as the length of the chain backbone in its fully extended state.

The flexibility of an unbranched chain polymer is characterized by its persistence length.

Monomer arrangement in copolymers

Different types of copolymers

Monomers within a copolymer may be organized along the backbone in a variety of ways.

  • Alternating copolymers possess regularly alternating monomer residues: [AB...]n (2).
  • Periodic copolymers have monomer residue types arranged in a repeating sequence: [AnBm...] m being different from n.
  • Statistical copolymers have monomer residues arranged according to a known statistical rule. A statistical copolymer in which the probability of finding a particular type of monomer residue at a particular point in the chain is independent of the types of surrounding monomer residue may be referred to as a truly random copolymer (3).
  • Block copolymers have two or more homopolymer subunits linked by covalent bonds (4). Polymers with two or three blocks of two distinct chemical species (e.g., A and B) are called diblock copolymers and triblock copolymers, respectively. Polymers with three blocks, each of a different chemical species (e.g., A, B, and C) are termed triblock terpolymers.
  • Graft or grafted copolymers contain side chains that have a different composition or configuration than the main chain.(5)

Tacticity

Tacticity describes the relative stereochemistry of chiral centers in neighboring structural units within a macromolecule. There are three types: isotactic (all substituents on the same side), atactic (random placement of substituents), and syndiotactic (alternating placement of substituents).

Polymer morphology

Polymer morphology generally describes the arrangement and microscale ordering of polymer chains in space.

Crystallinity

When applied to polymers, the term crystalline has a somewhat ambiguous usage. In some cases, the term crystalline finds identical usage to that used in conventional crystallography. For example, the structure of a crystalline protein or polynucleotide, such as a sample prepared for x-ray crystallography, may be defined in terms of a conventional unit cell composed of one or more polymer molecules with cell dimensions of hundreds of angstroms or more.

A synthetic polymer may be loosely described as crystalline if it contains regions of three-dimensional ordering on atomic (rather than macromolecular) length scales, usually arising from intramolecular folding and/or stacking of adjacent chains. Synthetic polymers may consist of both crystalline and amorphous regions; the degree of crystallinity may be expressed in terms of a weight fraction or volume fraction of crystalline material. Few synthetic polymers are entirely crystalline.

The crystallinity of polymers is characterized by their degree of crystallinity, ranging from zero for a completely non-crystalline polymer to one for a theoretical completely crystalline polymer. Polymers with microcrystalline regions are generally tougher (can be bent more without breaking) and more impact-resistant than totally amorphous polymers.

Polymers with a degree of crystallinity approaching zero or one will tend to be transparent, while polymers with intermediate degrees of crystallinity will tend to be opaque due to light scattering by crystalline or glassy regions. Thus for many polymers, reduced crystallinity may also be associated with increased transparency.

Chain conformation

The space occupied by a polymer molecule is generally expressed in terms of radius of gyration, which is an average distance from the center of mass of the chain to the chain itself. Alternatively, it may be expressed in terms of pervaded volume, which is the volume of solution spanned by the polymer chain and scales with the cube of the radius of gyration.

Mechanical properties

A polyethylene sample that hasnecked under tension.

The bulk properties of a polymer are those most often of end-use interest. These are the properties that dictate how the polymer actually behaves on a macroscopic scale.

Tensile strength

The tensile strength of a material quantifies how much elongating stress the material will endure before failure. This is very important in applications that rely upon a polymer's physical strength or durability. For example, a rubber band with a higher tensile strength will hold a greater weight before snapping. In general, tensile strength increases with polymer chain length and crosslinking of polymer chains.

Young's modulus of elasticity

Young's Modulus quantifies the elasticity of the polymer. It is defined, for small strains, as the ratio of rate of change of stress to strain. Like tensile strength, this is highly relevant in polymer applications involving the physical properties of polymers, such as rubber bands. The modulus is strongly dependent on temperature. Viscoelasticity describes a complex time-dependent elastic response, which will exhibit hysteresis in the stress-strain curve when the load is removed. Dynamic mechanical analysis or DMA measures this complex modulus by oscillating the load and measuring the resulting strain as a function of time.

Transport properties

Transport properties such as diffusivity relate to how rapidly molecules move through the polymer matrix. These are very important in many applications of polymers for films and membranes.

Phase behavior

Melting point

The term melting point, when applied to polymers, suggests not a solid–liquid phase transition but a transition from a crystalline or semi-crystalline phase to a solid amorphous phase. Though abbreviated as simply Tm, the property in question is more properly called the crystalline melting temperature. Among synthetic polymers, crystalline melting is only discussed with regards to thermoplastics, as thermosetting polymers will decompose at high temperatures rather than melt.

Glass transition temperature

A parameter of particular interest in synthetic polymer manufacturing is the glass transition temperature (Tg), at which amorphous polymers undergo a transition from a rubbery, viscous liquid, to a brittle, glassy amorphous solid on cooling. The glass transition temperature may be engineered by altering the degree of branching or crosslinking in the polymer or by the addition of plasticizer.

Mixing behavior

Phase diagram of the typical mixing behavior of weakly interacting polymer solutions.

In general, polymeric mixtures are far less miscible than mixtures of small molecule materials. This effect results from the fact that the driving force for mixing is usually entropy, not interaction energy. In other words, miscible materials usually form a solution not because their interaction with each other is more favorable than their self-interaction, but because of an increase in entropy and hence free energy associated with increasing the amount of volume available to each component. This increase in entropy scales with the number of particles (or moles) being mixed. Since polymeric molecules are much larger and hence generally have much higher specific volumes than small molecules, the number of molecules involved in a polymeric mixture is far smaller than the number in a small molecule mixture of equal volume. The energetics of mixing, on the other hand, is comparable on a per volume basis for polymeric and small molecule mixtures. This tends to increase the free energy of mixing for polymer solutions and thus make solvation less favorable. Thus, concentrated solutions of polymers are far rarer than those of small molecules.

Furthermore, the phase behavior of polymer solutions and mixtures is more complex than that of small molecule mixtures. Whereas most small molecule solutions exhibit only an upper critical solution temperature phase transition, at which phase separation occurs with cooling, polymer mixtures commonly exhibit a lower critical solution temperature phase transition, at which phase separation occurs with heating.

In dilute solution, the properties of the polymer are characterized by the interaction between the solvent and the polymer. In a good solvent, the polymer appears swollen and occupies a large volume. In this scenario, intermolecular forces between the solvent and monomer subunits dominate over intramolecular interactions. In a bad solvent or poor solvent, intramolecular forces dominate and the chain contracts. In the theta solvent, or the state of the polymer solution where the value of the second virial coefficient becomes 0, the intermolecular polymer-solvent repulsion balances exactly the intramolecular monomer-monomer attraction. Under the theta condition (also called the Flory condition), the polymer behaves like an ideal random coil. The transition between the states is known as acoil-globule transition.

Inclusion of plasticizers

Inclusion of plasticizers tends to lower Tg and increase polymer flexibility. Plasticizers are generally small molecules that are chemically similar to the polymer and create gaps between polymer chains for greater mobility and reduced interchain interactions. A good example of the action of plasticizers is related to polyvinylchlorides or PVCs. An uPVC, or unplasticized polyvinylchloride, is used for things such as pipes. A pipe has no plasticizers in it, because it needs to remain strong and heat-resistant. Plasticized PVC is used in clothing for a flexible quality. Plasticizers are also put in some types of cling film to make the polymer more flexible.

Chemical properties

The attractive forces between polymer chains play a large part in determining polymer's properties. Because polymer chains are so long, these interchain forces are amplified far beyond the attractions between conventional molecules. Different side groups on the polymer can lend the polymer to ionic bonding or hydrogen bonding between its own chains. These stronger forces typically result in higher tensile strength and higher crystalline melting points.

The intermolecular forces in polymers can be affected by dipoles in the monomer units. Polymers containing amide or carbonyl groups can form hydrogen bonds between adjacent chains; the partially positively charged hydrogen atoms in N-H groups of one chain are strongly attracted to the partially negatively charged oxygen atoms in C=O groups on another. These strong hydrogen bonds, for example, result in the high tensile strength and melting point of polymers containing urethane or urea linkages. Polyestershave dipole-dipole bonding between the oxygen atoms in C=O groups and the hydrogen atoms in H-C groups. Dipole bonding is not as strong as hydrogen bonding, so a polyester's melting point and strength are lower than Kevlar's (Twaron), but polyesters have greater flexibility.

Ethene, however, has no permanent dipole. The attractive forces between polyethylene chains arise from weak van der Waals forces. Molecules can be thought of as being surrounded by a cloud of negative electrons. As two polymer chains approach, their electron clouds repel one another. This has the effect of lowering the electron density on one side of a polymer chain, creating a slight positive dipole on this side. This charge is enough to attract the second polymer chain. Van der Waals forces are quite weak, however, so polyethylene can have a lower melting temperature compared to other polymers.

Optical properties

Polymers such as PMMA and HEMA:MMA are used as matrices in the gain medium of solid-state dye lasers that are also known as polymer lasers. These polymers have a high surface quality and are also highly transparent so that the laser properties are dominated by the laser dye used to dope the polymer matrix. These type of lasers, that also belong to the class of organic lasers, are known to yield very narrow linewidths which is useful for spectroscopy and analytical applications. An important optical parameter in the polymer used in laser applications is the change in refractive index with temperature also known as dn/dT. For the polymers mentioned here the (dn/dT) ~ −1.4 × 10−4 in units of K−1 in the 297 ≤ T ≤ 337 K range.

Standardized polymer nomenclature

There are multiple conventions for naming polymer substances. Many commonly used polymers, such as those found in consumer products, are referred to by a common or trivial name. The trivial name is assigned based on historical precedent or popular usage rather than a standardized naming convention. Both the American Chemical Society(ACS) and IUPAC have proposed standardized naming conventions; the ACS and IUPAC conventions are similar but not identical. Examples of the differences between the various naming conventions are given in the table below:

Common name ACS name IUPAC name
Poly(ethylene oxide) or PEO Poly(oxyethylene) Poly(oxyethene)
Poly(ethylene terephthalate) or PET Poly(oxy-1,2-ethanediyloxycarbonyl-1,4-phenylenecarbonyl) Poly(oxyetheneoxyterephthaloyl)
Nylon 6 Poly[amino(1-oxo-1,6-hexanediyl)] Poly[amino(1-oxohexan-1,6-diyl)]

In both standardized conventions, the polymers' names are intended to reflect the monomer(s) from which they are synthesized rather than the precise nature of the repeating subunit. For example, the polymer synthesized from the simple alkene ethene is called polyethylene, retaining the -ene suffix even though the double bond is removed during the polymerization process:

Ethene polymerization.png

Polyethylene-repeat-2D-flat.png

Polymer characterization

The characterization of a polymer requires several parameters which need to be specified. This is because a polymer actually consists of a statistical distribution of chains of varying lengths, and each chain consists of monomer residues which affect its properties.

A variety of lab techniques are used to determine the properties of polymers. Techniques such as wide angle X-ray scattering, small angle X-ray scattering, and small angle neutron scattering are used to determine the crystalline structure of polymers. Gel permeation chromatography is used to determine the number average molecular weight, weight average molecular weight, and polydispersity. FTIR, Raman and NMR can be used to determine composition. Thermal properties such as the glass transition temperature and melting point can be determined by differential scanning calorimetry and dynamic mechanical analysis. Pyrolysis followed by analysis of the fragments is one more technique for determining the possible structure of the polymer. Thermogravimetry is a useful technique to evaluate the thermal stability of the polymer. Detailed analysis of TG curves also allow us to know a bit of the phase segregation in polymers. Rheological properties are also commonly used to help determine molecular architecture (molecular weight, molecular weight distribution and branching) as well as to understand how the polymer will process, through measurements of the polymer in the melt phase. Another polymer characterization technique is Automatic Continuous Online Monitoring of Polymerization Reactions (ACOMP) which provides real-time characterization of polymerization reactions. It can be used as an analytical method in R&D, as a tool for reaction optimization at the bench and pilot plant level and, eventually, for feedback control of full-scale reactors. ACOMP measures in a model-independent fashion the evolution of average molar mass and intrinsic viscosity, monomer conversion kinetics and, in the case of copolymers, also the average composition drift and distribution. It is applicable in the areas of free radical and controlled radical homo- and copolymerization, polyelectrolyte synthesis, heterogeneous phase reactions, including emulsion polymerization, adaptation to batch and continuous reactors, and modifications of polymers.

Polymer degradation

A plastic item with thirty years of exposure to heat and cold, brake fluid, and sunlight. Notice the discoloration, swelling, andcrazing of the material

Polymer degradation is a change in the properties—tensile strength, color, shape, or molecular weight—of a polymer or polymer-based product under the influence of one or more environmental factors, such as heat, light, chemicals and, in some cases, galvanicaction. It is often due to the scission of polymer chain bonds via hydrolysis, leading to a decrease in the molecular mass of the polymer.

Although such changes are frequently undesirable, in some cases, such as biodegradation and recycling, they may be intended to prevent environmental pollution. Degradation can also be useful in biomedical settings. For example, a copolymer of polylactic acidand polyglycolic acid is employed in hydrolysable stitches that slowly degrade after they are applied to a wound.

The susceptibility of a polymer to degradation depends on its structure. Epoxies and chains containing aromatic functionalities are especially susceptible to UV degradation while polyesters are susceptible to degradation by hydrolysis, while polymers containing anunsaturated backbone are especially susceptible to ozone cracking. Carbon based polymers are more susceptible to thermal degradation than inorganic polymers such as polydimethylsiloxane and are therefore not ideal for most high-temperature applications. High-temperature matrices such as bismaleimides (BMI), condensation polyimides (with an O-C-N bond), triazines (with a nitrogen (N) containing ring), and blends thereof are susceptible to polymer degradation in the form of galvanic corrosion when bare carbon fiber reinforced polymer CFRP is in contact with an active metal such as aluminium in salt water environments.

The degradation of polymers to form smaller molecules may proceed by random scission or specific scission. The degradation of polyethylene occurs by random scission—a random breakage of the bonds that hold the atoms of the polymer together. When heated above 450 °C, polyethylene degrades to form a mixture of hydrocarbons. Other polymers, such as poly(alpha-methylstyrene), undergo specific chain scission with breakage occurring only at the ends. They literally unzip or depolymerize back to the constituent monomer.

The sorting of polymer waste for recycling purposes may be facilitated by the use of the Resin identification codes developed by the Society of the Plastics Industry to identify the type of plastic.

Product failure

Chlorine attack of acetal resin plumbing joint

In a finished product, such a change is to be prevented or delayed. Failure of safety-critical polymer components can cause serious accidents, such as fire in the case of cracked and degraded polymer fuel lines. Chlorine-induced cracking of acetal resin plumbing joints andpolybutylene pipes has caused many serious floods in domestic properties, especially in the USA in the 1990s. Traces of chlorine in the water supply attacked vulnerable polymers in the plastic plumbing, a problem which occurs faster if any of the parts have been poorlyextruded or injection molded. Attack of the acetal joint occurred because of faulty molding, leading to cracking along the threads of the fitting which is a serious stress concentration.

Ozone-induced cracking in natural rubber tubing

Polymer oxidation has caused accidents involving medical devices. One of the oldest known failure modes is ozone cracking caused by chain scission when ozone gas attacks susceptible elastomers, such as natural rubber and nitrile rubber. They possess double bonds in their repeat units which are cleaved during ozonolysis. Cracks in fuel lines can penetrate the bore of the tube and cause fuel leakage. If cracking occurs in the engine compartment, electric sparks can ignite the gasoline and can cause a serious fire. In medical use degradation of polymers can lead to changes of physical and chemical characteristics of implantable devices.

Fuel lines can also be attacked by another form of degradation: hydrolysis. Nylon 6,6 is susceptible to acid hydrolysis, and in one accident, a fractured fuel line led to a spillage of diesel into the road. If diesel fuel leaks onto the road, accidents to following cars can be caused by the slippery nature of the deposit, which is like black ice.

 

 


Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

fibres

Fiber

 

From Wikipedia, the free encyclopedia


 

 

Fiber or fibre (from the Latin fibra) is a natural or synthetic substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate fibers, for example carbon fiber and ultra-high-molecular-weight polyethylene.

 

Synthetic fibers can often be produced very cheaply and in large amounts compared to natural fibers, but for clothing natural fibers can give some benefits, such as comfort, over their synthetic counterparts.

 

Natural fibers

 

 

Natural fibers develop or occur in the fiber shape, and include those produced by plants, animals, and geological processes. They can be classified according to their origin:

 

·         Vegetable fibers are generally based on arrangements of cellulose, often with lignin: examples include cotton, hemp, jute, flax,ramie, sisal, bagasse, and banana. Plant fibers are employed in the manufacture of paper and textile (cloth), and dietary fiber is an important component of human nutrition.

 

·         Wood fiber, distinguished from vegetable fiber, is from tree sources. Forms include groundwood, lacebark, thermomechanical pulp (TMP), and bleached or unbleached kraft or sulfite pulps. Kraft and sulfite (also called sulphite) refer to the type of pulping process used to remove the lignin bonding the original wood structure, thus freeing the fibers for use in paper and engineered woodproducts such as fiberboard.

 

·         Animal fibers consist largely of particular proteins. Instances are silkworm silk, spider silk, sinew, catgut, wool, sea silk and hair such as cashmere wool, mohair and angora, fur such as sheepskin, rabbit, mink, fox, beaver, etc.

 

·         Mineral fibers include the asbestos group. Asbestos is the only naturally occurring long mineral fiber. Six minerals have been classified as "asbestos" including chrysotile of the serpentine class and those belonging to the amphibole class: amosite, crocidolite,tremolite, anthophyllite and actinolite. Short, fiber-like minerals include wollastonite and palygorskite.

 

·         Biological fibers also known as fibrous proteins or protein filaments consist largely of biologically relevant and biologically very important proteins, mutations or other genetic defects can lead to severe diseases. Instances are collagen family of proteins, tendon, muscle proteins like actin, cell proteins like microtubules and many others, spider silk, sinew and hair etc.

 

Man-made fibers

 

Man-made fibers or chemical fibers are fibers whose chemical composition, structure, and properties are significantly modified during the manufacturing process. Man-made fibers consist of regenerated fibers and synthetic fibers.

 

Semi-synthetic fibers

 

Semi-synthetic fibers are made from raw materials with naturally long-chain polymer structure and are only modified and partially degraded by chemical processes, in contrast to completely synthetic fibers such as nylon (polyamide) or dacron (polyester), which the chemist synthesizes from low-molecular weight compounds by polymerization (chain-building) reactions. The earliest semi-synthetic fiber is the cellulose regenerated fiber, rayon. Most semi-synthetic fibers are cellulose regenerated fibers.

 

Cellulose regenerated fibers

 

Cellulose fibers are a subset of man-made fibers, regenerated from natural cellulose. The cellulose comes from various sources: rayon from tree wood fiber, Modal from beech trees, bamboo fiber from bamboo, seacell from seaweed, etc. In the production of these fibers, the cellulose is reduced to a fairly pure form as a viscous mass and formed into fibers by extrusion through spinnerets. Therefore, the manufacturing process leaves few characteristics distinctive of the natural source material in the finished products.

 

Some examples are:

 

·         rayon

 

·         bamboo fiber

 

·         Lyocell, a brand of rayon

 

·         Modal, using beech trees as input

 

·         diacetate fiber

 

·         triacetate fiber.

 

Historically, cellulose diacetate and -triacetate were classified under the term rayon, but are now considered distinct materials.

 

Synthetic fibers

 

 

Synthetic come entirely from synthetic materials such as petrochemicals, unlike those man-made fibers derived from such natural substances as cellulose or protein.

 

Fiber classification in reinforced plastics falls into two classes: (i) short fibers, also known as discontinuous fibers, with a general aspect ratio (defined as the ratio of fiber length to diameter) between 20 and 60, and (ii) long fibers, also known as continuous fibers, the general aspect ratio is between 200 and 500.

 

Metallic fibers

 

 

Metallic fibers can be drawn from ductile metals such as copper, gold or silver and extruded or deposited from more brittle ones, such as nickel, aluminum or iron. See also Stainless steel fibers.

 

Carbon fiber

 

Carbon fibers are often based on oxydized and via pyrolysis carbonized polymers like PAN, but the end product is almost pure carbon.

 

Silicon carbide fiber

 

Silicon carbide fibers, where the basic polymers are not hydrocarbons but polymers, where about 50% of the carbon atoms are replaced by silicon atoms, so-called poly-carbo-silanes. The pyrolysis yields an amorphous silicon carbide, including mostly other elements like oxygen, titanium, or aluminium, but with mechanical properties very similar to those of carbon fibers.

 

Fiberglass

 

Fiberglass, made from specific glass, and optical fiber, made from purified natural quartz, are also man-made fibers that come from natural raw materials, silica fiber, made fromsodium silicate (water glass) and basalt fiber made from melted basalt.

 

Mineral fibers

 

Mineral fibers can be particularly strong because they are formed with a low number of surface defects, asbestos is a common one

 

Polymer fibers

 

·         Polymer fibers are a subset of man-made fibers, which are based on synthetic chemicals (often from petrochemical sources) rather than arising from natural materials by a purely physical process. These fibers are made from:

 

·         polyamide nylon

 

·         PET or PBT polyester

 

·         phenol-formaldehyde (PF)

 

·         polyvinyl chloride fiber (PVC) vinyon

 

·         polyolefins (PP and PE) olefin fiber

 

·         acrylic polyesters, pure polyester PAN fibers are used to make carbon fiber by roasting them in a low oxygen environment. Traditional acrylic fiber is used more often as a synthetic replacement for wool. Carbon fibers and PF fibers are noted as two resin-based fibers that are not thermoplastic, most others can be melted.

 

·         aromatic polyamids (aramids) such as Twaron, Kevlar and Nomex thermally degrade at high temperatures and do not melt. These fibers have strong bonding between polymer chains

 

·         polyethylene (PE), eventually with extremely long chains / HMPE (e.g. Dyneema or Spectra).

 

·         Elastomers can even be used, e.g. spandex although urethane fibers are starting to replace spandex technology.

 

·         polyurethane fiber

 

·         Elastolefin

 

·         Coextruded fibers have two distinct polymers forming the fiber, usually as a core-sheath or side-by-side. Coated fibers exist such as nickel-coated to provide static elimination, silver-coated to provide anti-bacterial properties and aluminum-coated to provide RF deflection for radar chaff. Radar chaff is actually a spool of continuous glass tow that has been aluminum coated. An aircraft-mounted high speed cutter chops it up as it spews from a moving aircraft to confuse radar signals.

 

Microfibers

 

Microfibers in textiles refer to sub-denier fiber (such as polyester drawn to 0.5 denier). Denier and Dtex are two measurements of fiber yield based on weight and length. If the fiber density is known, you also have a fiber diameter, otherwise it is simpler to measure diameters in micrometers. Microfibers in technical fibers refer to ultra fine fibers (glass or meltblown thermoplastics) often used in filtration. Newer fiber designs include extruding fiber that splits into multiple finer fibers. Most synthetic fibers are round in cross-section, but special designs can be hollow, oval, star-shaped or trilobal. The latter design provides more optically reflective properties. Synthetic textile fibers are often crimped to provide bulk in a woven, non woven or knitted structure. Fiber surfaces can also be dull or bright. Dull surfaces reflect more light while bright tends to transmit light and make the fiber more transparent.

 

Very short and/or irregular fibers have been called fibrils. Natural cellulose, such as cotton or bleached kraft, show smaller fibrils jutting out and away from the main fiber structure.

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

 

Glass fibre

Glass fiber

From Wikipedia, the free encyclopedia

 

Glass fiber (or glass fibre) is a material consisting of numerous extremely fine fibers of glass.

 

Glass makers throughout history have experimented with glass fibers, but mass manufacture of glass fiber was only made possible with the invention of finer machine tooling. In 1893, Edward Drummond Libbey exhibited a dress at the World's Columbian Expositionincorporating glass fibers with the diameter and texture of silk fibers. This was first worn by the popular stage actress of the time Georgia Cayvan. glass fibers can also occur naturally, as Pele's hair.

 

Glass wool, which is one product called "fiberglass" today, was invented in 1932–1933 by Russell Games Slayter of Owens-Corning, as a material to be used as thermal building insulation. It is marketed under the trade name Fiberglas, which has become a genericized trademark. glass fiber when used as a thermal insulating material, is specially manufactured with a bonding agent to trap many small air cells, resulting in the characteristically air-filled low-density "glass wool" family of products.

 

Glass fiber has roughly comparable mechanical properties to other fibers such as polymers and carbon fiber. Although not as strong or as rigid as carbon fiber, it is much cheaper and significantly less brittle when used in composites. glass fibers are therefore used as a reinforcing agent for many polymer products; to form a very strong and relatively lightweight fiber-reinforced polymer (FRP) composite material called glass-reinforced plastic (GRP), also popularly known as "fibreglass". This structural material product contains little or no air or gas, is more dense, and is a much poorer thermal insulator than is glass wool.

 

Fiber formation

 

Glass fiber is formed when thin strands of silica-based or other formulation glass are extruded into many fibers with small diameters suitable for textile processing. The technique of heating and drawing glass into fine fibers has been known for millennia; however, the use of these fibers for textile applications is more recent. Until this time, all glass fiber had been manufactured as staple (that is, clusters of short lengths of fiber).

 

The modern method for producing glass wool is the invention of Games Slayter working at the Owens-Illinois Glass Co. (Toledo, Ohio). He first applied for a patent for a new process to make glass wool in 1933. The first commercial production of glass fiber was in 1936. In 1938 Owens-Illinois Glass Company and Corning Glass Works joined to form the Owens-Corning Fiberglas Corporation. When the two companies joined to produce and promote glass fiber, they introduced continuous filament glass fibers. Owens-Corning is still the major glass-fiber producer in the market today.

 

Composition. The most common types of glass fiber used in fiberglass is E-glass, which is alumino-borosilicate glass with less than 1% w/w alkali oxides, mainly used for glass-reinforced plastics (GRP). Other types of glass used are A-glass (Alkali-lime glass with little or no boron oxide), E-CR-glass (Electrical/Chemical Resistance; alumino-lime silicate with less than 1% w/w alkali oxides, with high acid resistance), C-glass (alkali-lime glass with high boron oxide content, used for glass staple fibers and insulation), D-glass (borosilicate glass, named for its low Dielectric constant), R-glass (alumino silicate glass without MgO and CaO with high mechanical requirements as reinforcement), and S-glass (alumino silicate glass without CaO but with high MgO content with high tensile strength).

 

Naming and use. Pure silica (silicon dioxide), when cooled as fused quartz into a glass with no true melting point, can be used as a glass fiber for fiberglass, but has the drawback that it must be worked at very high temperatures. In order to lower the necessary work temperature, other materials are introduced as "fluxing agents" (i.e., components to lower the melting point). Ordinary A-glass ("A" for "alkali-lime") or soda lime glass, crushed and ready to be remelted, as so-called cullet glass, was the first type of glass used for fiberglass. E-glass ("E" because of initial electrical application), is alkali free, and was the first glass formulation used for continuous filament formation. It now makes up most of the fiberglass production in the world, and also is the single largest consumer of boron minerals globally. It is susceptible to chloride ion attack and is a poor choice for marine applications. S-glass ("S" for "Strength") is used when high tensile strength (modulus) is important, and is thus an important building and aircraft epoxy composite. The same substance is known as R-glass ("R" for "reinforcement") in Europe). C-glass ("C" for "chemical resistance") and T-glass ("T" is for "thermal insulator" – a North American variant of C-glass) are resistant to chemical attack; both are often found in insulation-grades of blown fiberglass.

 

Chemistry

 

The basis of textile-grade glass fibers is silica, SiO2. In its pure form it exists as a polymer, (SiO2)n. It has no true melting point but softens up to 1200 °C, where it starts todegrade. At 1713 °C, most of the molecules can move about freely. If the glass is extruded and cooled quickly at this temperature, it will be unable to form an ordered structure. In the polymer it forms SiO4 groups which are configured as a tetrahedron with the silicon atom at the center, and four oxygen atoms at the corners. These atoms then form a network bonded at the corners by sharing the oxygen atoms.

 

The vitreous and crystalline states of silica (glass and quartz) have similar energy levels on a molecular basis, also implying that the glassy form is extremely stable. In order to induce crystallization, it must be heated to temperatures above 1200 °C for long periods of time.

 

Although pure silica is a perfectly viable glass and glass fiber, it must be worked with at very high temperatures, which is a drawback unless its specific chemical properties are needed. It is usual to introduce impurities into the glass in the form of other materials to lower its working temperature. These materials also impart various other properties to the glass that may be beneficial in different applications. The first type of glass used for fiber was soda lime glass or A-glass ("A" for the alkali it contains). It is not very resistant to alkali. A new type, E-glass, was formed; this is an alumino-borosilicate glass that is alkali-free (<2%). This was the first glass formulation used for continuous filamentformation. E-glass still makes up most of the glass fiber production in the world. Its particular components may differ slightly in percentage, but must fall within a specific range. The letter E is used because it was originally for electrical applications. S-glass (S for "stiff") is a high-strength formulation for use when tensile strength is the most important property. C-glass was developed to resist attack from chemicals, mostly acids that destroy E-glass. T-glass is a North American variant of C-glass. A-glass is an industry term for cullet glass, often bottles, made into fiber. AR-glass is alkali-resistant glass. Most glass fibers have limited solubility in water but are very dependent on pH. Chloride ions will also attack and dissolve E-glass surfaces.

 

E-glass does not actually melt, but softens instead, the softening point being "the temperature at which a 0.55–0.77 mm diameter fiber 235 mm long, elongates under its own weight at 1 mm/min when suspended vertically and heated at the rate of 5 °C per minute". The strain point is reached when the glass has a viscosity of 1014.5 poise. Theannealing point, which is the temperature where the internal stresses are reduced to an acceptable commercial limit in 15 minutes, is marked by a viscosity of 1013 poise.

 

Properties

 

Thermal

 

Glass fibers are useful thermal insulators because of their high ratio of surface area to weight. However, the increased surface area makes them much more susceptible to chemical attack. By trapping air within them, blocks of glass fiber make good thermal insulation, with a thermal conductivity of the order of 0.05 W/(m·K).

 

Tensile[edit]

 

Fiber type

Tensile strength
(MPa)
[10]

Compressive strength
(MPa)

Density
(g/cm
3)

Thermal expansion
(µm/m·°C)

Softening T
(°C)

Price
($/kg)

E-glass

3445

1080

2.58

5.4

846

~2

S-2 glass

4890

1600

2.46

2.9

1056

~20

 

The strength of glass is usually tested and reported for "virgin" or pristine fibers—those that have just been manufactured. The freshest, thinnest fibers are the strongest because the thinner fibers are more ductile. The more the surface is scratched, the less the resulting tenacity. Because glass has an amorphous structure, its properties are the same along the fiber and across the fiber. Humidity is an important factor in the tensile strength. Moisture is easily adsorbed and can worsen microscopic cracks and surface defects, and lessen tenacity.

 

In contrast to carbon fiber, glass can undergo more elongation before it breaks. There is a correlation between bending diameter of the filament and the filament diameter. The viscosity of the molten glass is very important for manufacturing success. During drawing (pulling of the glass to reduce fiber circumference), the viscosity must be relatively low. If it is too high, the fiber will break during drawing. However, if it is too low, the glass will form droplets rather than drawing out into fiber.

 

Manufacturing processes

 

Melting

 

There are two main types of glass fiber manufacture and two main types of glass fiber product. First, fiber is made either from a direct melt process or a marble remelt process. Both start with the raw materials in solid form. The materials are mixed together and melted in a furnace. Then, for the marble process, the molten material is sheared and rolled into marbles which are cooled and packaged. The marbles are taken to the fiber manufacturing facility where they are inserted into a can and remelted. The molten glass is extruded to the bushing to be formed into fiber. In the direct melt process, the molten glass in the furnace goes directly to the bushing for formation.

 

Formation

 

The bushing plate is the most important part of the machinery for making the fiber. This is a small metal furnace containing nozzles for the fiber to be formed through. It is almost always made of platinum alloyed with rhodium for durability. Platinum is used because the glass melt has a natural affinity for wetting it. When bushings were first used they were 100% platinum, and the glass wetted the bushing so easily that it ran under the plate after exiting the nozzle and accumulated on the underside. Also, due to its cost and the tendency to wear, the platinum was alloyed with rhodium. In the direct melt process, the bushing serves as a collector for the molten glass. It is heated slightly to keep the glass at the correct temperature for fiber formation. In the marble melt process, the bushing acts more like a furnace as it melts more of the material.

 

Bushings are the major expense in fiber glass production. The nozzle design is also critical. The number of nozzles ranges from 200 to 4000 in multiples of 200. The important part of the nozzle in continuous filament manufacture is the thickness of its walls in the exit region. It was found that inserting a counterbore here reduced wetting. Today, the nozzles are designed to have a minimum thickness at the exit. As glass flows through the nozzle, it forms a drop which is suspended from the end. As it falls, it leaves a thread attached by the meniscus to the nozzle as long as the viscosity is in the correct range for fiber formation. The smaller the annular ring of the nozzle and the thinner the wall at exit, the faster the drop will form and fall away, and the lower its tendency to wet the vertical part of the nozzle. The surface tension of the glass is what influences the formation of the meniscus. For E-glass it should be around 400 mN/m.

 

The attenuation (drawing) speed is important in the nozzle design. Although slowing this speed down can make coarser fiber, it is uneconomic to run at speeds for which the nozzles were not designed.

 

Continuous filament process

 

In the continuous filament process, after the fiber is drawn, a size is applied. This size helps protect the fiber as it is wound onto a bobbin. The particular size applied relates to end-use. While some sizes are processing aids, others make the fiber have an affinity for a certain resin, if the fiber is to be used in a composite. Size is usually added at 0.5–2.0% by weight. Winding then takes place at around 1000 m/min.

 

Staple fiber process

 

For staple fiber production, there are a number of ways to manufacture the fiber. The glass can be blown or blasted with heat or steam after exiting the formation machine. Usually these fibers are made into some sort of mat. The most common process used is the rotary process. Here, the glass enters a rotating spinner, and due to centrifugal force is thrown out horizontally. The air jets push it down vertically, and binder is applied. Then the mat is vacuumed to a screen and the binder is cured in the oven.

 

Safety

 

Glass fiber has increased in popularity since the discovery that asbestos causes cancer and its subsequent removal from most products. However, the safety of glass fiber is also being called into question, as research shows that the composition of this material (asbestos and glass fiber are both silicate fibers) can cause similar toxicity as asbestos.

 

1970s studies on rats found that fibrous glass of less than 3 micrometers in diameter and greater than 20 micrometers in length is a "potent carcinogen". Likewise, theInternational Agency for Research on Cancer found it "may reasonably be anticipated to be a carcinogen" in 1990. The American Conference of Governmental Industrial Hygienists, on the other hand, says that there is insufficient evidence, and that glass fiber is in group A4: "Not classifiable as a human carcinogen".

 

The North American Insulation Manufacturers Association (NAIMA) claims that glass fiber is fundamentally different from asbestos, since it is man-made instead of naturally-occurring. They claim that glass fiber "dissolves in the lungs", while asbestos remains in the body for life. Although both glass fiber and asbestos are made from silica filaments, NAIMA claims that asbestos is more dangerous because of its crystalline structure, which causes it to cleave into smaller, more dangerous pieces, citing the U.S. Department of Health and Human Services:

 

Synthetic vitreous fibers [fiber glass] differ from asbestos in two ways that may provide at least partial explanations for their lower toxicity. Because most synthetic vitreous fibers are not crystalline like asbestos, they do not split longitudinally to form thinner fibers. They also generally have markedly less biopersistence in biological tissues than asbestos fibers because they can undergo dissolution and transverse breakage.

 

A 1998 study using rats found that the biopersistence of synthetic fibers after one year was 0.04–10%, but 27% for amosite asbestos. Fibers that persisted longer were found to be more carcinogenic.

 

Glass-reinforced plastic (fiberglass)

 

 

Glass-reinforced plastic (GRP) is a composite material or fiber-reinforced plastic made of a plastic reinforced by fine glass fibers. Like graphite-reinforced plastic, the composite material is commonly referred to as fiberglass. The glass can be in the form of a chopped strand mat (CSM) or a woven fabric.

 

As with many other composite materials (such as reinforced concrete), the two materials act together, each overcoming the deficits of the other. Whereas the plastic resins are strong in compressive loading and relatively weak in tensile strength, the glass fibers are very strong in tension but tend not to resist compression. By combining the two materials, GRP becomes a material that resists both compressive and tensile forces well. The two materials may be used uniformly or the glass may be specifically placed in those portions of the structure that will experience tensile loads.

 

Uses

 

Uses for regular glass fiber include mats and fabrics for thermal insulation, electrical insulation, sound insulation, high-strength fabrics or heat- and corrosion-resistant fabrics. It is also used to reinforce various materials, such as tent poles, pole vault poles, arrows, bows and crossbows, translucent roofing panels, automobile bodies, hockey sticks,surfboards, boat hulls, and paper honeycomb. It has been used for medical purposes in casts. Glass fiber is extensively used for making FRP tanks and vessels.

 

Open-weave glass fiber grids are used to reinforce asphalt pavement. Non-woven glass fiber/polymer blend mats are used saturated with asphalt emulsion and overlaid with asphalt, producing a waterproof, crack-resistant membrane. Use of glass-fiber reinforced polymer rebar instead of steel rebar shows promise in areas where avoidance of steel corrosion is desired.

 

Role of recycling in glass fiber manufacturing

 

Manufacturers of glass-fiber insulation can use recycled glass. Recycled glass fiber has up to a 40% recycled glass.

 

 

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

 

Carbon fibers

Carbon fibers

From Wikipedia, the free encyclopedia

 

 

 

Carbon fibers or carbon fibres (alternatively CF, graphite fiber or graphite fibre) are fibers about 5–10 micrometres in diameter and composed mostly of carbon atoms.

 

To produce a carbon fiber, the carbon atoms are bonded together in crystals that are more or less aligned parallel to the long axis of the fiber as the crystal alignment gives the fiber high strength-to-volume ratio (making it strong for its size). Several thousand carbon fibers are bundled together to form a tow, which may be used by itself or woven into a fabric.

 

The properties of carbon fibers, such as high stiffness, high tensile strength, low weight, high chemical resistance, high temperature tolerance and low thermal expansion, make them very popular in aerospace, civil engineering, military, and motorsports, along with other competition sports. However, they are relatively expensive when compared with similar fibers, such as glass fibers or plastic fibers.

 

Carbon fibers are usually combined with other materials to form a composite. When combined with a plastic resin and wound or molded it forms carbon-fiber-reinforced polymer (often referred to as carbon fiber) which has a very high strength-to-weight ratio, and is extremely rigid although somewhat brittle. However, carbon fibers are also composited with other materials, such as with graphite to form carbon-carbon composites, which have a very high heat tolerance.

 

History[edit]

 

In 1879, Thomas Edison baked cotton threads or bamboo slivers at high temperatures carbonizing them into an all-carbon fiber filament used in one of the first incandescent light bulbs to be heated by electricity. In 1880, Lewis Latimer developed a reliable carbon wire filament for the incandescent light bulb, heated by electricity.

 

In 1958, Roger Bacon created high-performance carbon fibers at the Union Carbide Parma Technical Center, now GrafTech International Holdings, Inc., located outside ofCleveland, Ohio. Those fibers were manufactured by heating strands of rayon until they carbonized. This process proved to be inefficient, as the resulting fibers contained only about 20% carbon and had low strength and stiffness properties. In the early 1960s, a process was developed by Dr. Akio Shindo at Agency of Industrial Science and Technology of Japan, using polyacrylonitrile (PAN) as a raw material. This had produced a carbon fiber that contained about 55% carbon. In 1960 Richard Millington of H.I. Thompson Fiberglas Co. developed a process (US Patent No. 3,294,489) for producing a high carbon content (99%) fiber using rayon as a precursor. These carbon fibers had sufficient strength (modulus of elasticity and tensile strength) to be used as a reinforcement for composites having high strength to weight properties and for high temperature resistant applications

 

The high potential strength of carbon fiber was realized in 1963 in a process developed by W. Watt, L. N. Phillips, and W. Johnson at the Royal Aircraft Establishment atFarnborough, Hampshire. The process was patented by the UK Ministry of Defence, then licensed by the NRDC to three British companies: Rolls-Royce already making carbon fiber, Morganite, and Courtaulds. Within a few years, after successful use in 1968 of a Hyfil carbon-fiber fan assembly in the Conways of the Vickers VC10s operated by BOAC, Rolls-Royce took advantage of the new material's properties to break into the American market with its RB-211 aero-engine with carbon-fiber compressor blades. Unfortunately, the blades proved vulnerable to damage from bird impact. This problem and others caused Rolls-Royce such setbacks that the company was nationalized in 1971. The carbon-fiber production plant was sold off to form "Bristol Composites".

 

In the late 1960s, the Japanese took the lead in manufacturing PAN-based carbon fibers. The 1970 joint technology agreement allowed Union Carbide to manufacture the Japan’s Toray Industries superior product and United States to dominate the market. Morganite decided that carbon-fiber production was peripheral to its core business, leaving Courtaulds as the only big UK manufacturer. Continuing collaboration with the staff at Farnborough proved helpful in the quest for higher quality and improvements in the speed of production as Courtaulds developed two main markets: aerospace and sports equipment. However Courtaulds's big advantage as manufacturer of the "Courtelle" precursor now became a weakness. Courtelle's low cost and ready availability were potential advantages, but the water-based inorganic process used to produce it made the product susceptible to impurities that did not affect the organic process used by other carbon-fiber manufacturers.

 

Nevertheless, during the 1980s Courtaulds continued to be a major supplier of carbon fiber for the sports-goods market, with Mitsubishi its main customer until a move to expand, including building a production plant in California, turned out badly. The investment did not generate the anticipated returns, leading to a decision to pull out of the area and Courtaulds ceased carbon-fiber production in 1991. Ironically the one surviving UK carbon-fiber manufacturer continued to thrive making fiber based on Courtaulds's precursor. Inverness-based RK Carbon Fibres Ltd concentrated on producing carbon fiber for industrial applications, removing the need to compete at the quality levels reached by overseas manufacturers.

 

During the 1960s, experimental work to find alternative raw materials led to the introduction of carbon fibers made from a petroleum pitch derived from oil processing. These fibers contained about 85% carbon and had excellent flexural strength. Also, during this period, the Japanese Government heavily supported carbon fiber development at home and several Japanese companies such as Toray, Nippon Carbon, Toho Rayon and Mitsubishi started their own development and production. As they subsequently advanced to become market leaders, companies in USA and Europe were encouraged to take up these activities as well, either through their own developments or contractual acquisition of carbon fiber knowledge. These companies included Hercules, BASF and Celanese USA and Akzo in Europe.

 

Since the late 1970s, further types of carbon fiber yarn entered the global market, offering higher tensile strength and higher elastic modulus. For example, T400 from Toray with a tensile strength of 4,000 MPa and M40, a modulus of 400 GPa. Intermediate carbon fibers, such as IM 600 from Toho Rayon with up to 6,000 MPa were developed. Carbon fibers from Toray, Celanese and Akzo found their way to aerospace application from secondary to primary parts first in military and later in civil aircraft as in McDonnell Douglas, Boeing and Airbus planes. By 2000 the industrial applications for highly sophisticated machine parts in middle Europe was becoming more important.

 

Further manufacturing capacity has been added since the year 2000. Major production plants have started up in Turkey, China and South Korea.

 

Structure and properties

 

 

 

 

Carbon fiber is frequently supplied in the form of a continuous tow wound onto a reel. The tow is a bundle of thousands of continuous individual carbon filaments held together and protected by an organic coating, or size, such as polyethylene oxide (PEO) or polyvinyl alcohol (PVA). The tow can be conveniently unwound from the reel for use. Each carbon filament in the tow is a continuous cylinder with a diameter of 5–10 micrometers and consists almost exclusively of carbon. The earliest generation (e.g. T300, HTA and AS4) had diameters of 16–22micrometers. Later fibers (e.g. IM6 or IM600) have diameters that are approximately 5 micrometers.

 

The atomic structure of carbon fiber is similar to that of graphite, consisting of sheets of carbon atoms arranged in a regular hexagonalpattern (graphene sheets), the difference being in the way these sheets interlock. Graphite is a crystalline material in which the sheets are stacked parallel to one another in regular fashion. The intermolecular forces between the sheets are relatively weak Van der Waals forces, giving graphite its soft and brittle characteristics.

 

Depending upon the precursor to make the fiber, carbon fiber maybe turbostratic or graphitic, or have a hybrid structure with both graphitic and turbostratic parts present. In turbostratic carbon fiber the sheets of carbon atoms are haphazardly folded, or crumpled, together. Carbon fibers derived from Polyacrylonitrile (PAN) are turbostratic, whereas carbon fibers derived from mesophase pitch are graphitic after heat treatment at temperatures exceeding 2200 °C. Turbostratic carbon fibers tend to have high tensile strength, whereas heat-treated mesophase-pitch-derived carbon fibers have high Young's modulus (i.e., high stiffness or resistance to extension under load) and high thermal conductivity.

 

Applications

 

 

 

 

The global demand on carbon fiber composites was valued at roughly US$10.8 billion in 2009, which declined 8–10% from the previous year. It is expected to reach US$13.2 billion by 2012 and to increase to US$18.6 billion by 2015 with an annual growth rate of 7% or more. Strongest demands come from aircraft & aerospace, wind energy, as well as from the automotive industry[6] with optimized resin systems.

 

Composite materials[edit]

 

Carbon fiber is most notably used to reinforce composite materials, particularly the class of materials known as carbon fiber or graphite reinforced polymers. Non-polymer materials can also be used as the matrix for carbon fibers. Due to the formation of metal carbides and corrosion considerations, carbon has seen limited success in metal matrix composite applications. Reinforced carbon-carbon (RCC) consists of carbon fiber-reinforced graphite, and is used structurally in high-temperature applications. The fiber also finds use in filtration of high-temperature gases, as an electrode with high surface area and impeccable corrosion resistance, and as an anti-static component. Molding a thin layer of carbon fibers significantly improves fire resistance of polymers or thermoset composites because a dense, compact layer of carbon fibers efficiently reflects heat.

 

The increasing use of carbon fiber composites is displacing aluminum from aerospace applications in favor of other metals because of galvanic corrosion issues.

 

Textiles

 

 

 

 

Precursors for carbon fibers are polyacrylonitrile (PAN), rayon and pitch. Carbon fiber filament yarns are used in several processing techniques: the direct uses are for prepregging, filament winding, pultrusion, weaving, braiding, etc. Carbon fiber yarn is rated by the linear density (weight per unit length, i.e. 1 g/1000 m = 1 tex) or by number of filaments per yarn count, in thousands. For example, 200 tex for 3,000 filaments of carbon fiber is three times as strong as 1,000 carbon filament yarn, but is also three times as heavy. This thread can then be used to weave a carbon fiber filament fabric or cloth. The appearance of this fabric generally depends on the linear density of the yarn and the weave chosen. Some commonly used types of weave are twill, satin and plain. Carbon filament yarns can be also knitted or braided.

 

Microelectrodes[edit]

 

Carbon fibers are used for fabrication of carbon-fiber microelectrodes. In this application typically a single carbon fiber with diameter of 5–7 μm is sealed in a glass capillary. At the tip the capillary is either sealed with epoxy and polished to make carbon-fiber disk microelectrode or the fiber is cut to a length of 75–150 μm to make carbon-fiber cylinder electrode. Carbon-fiber microelectrodes are used either in amperometry or fast-scan cyclic voltammetry for detection of biochemical signaling.

 

Catalysis[edit]

 

PAN-based nanofibers can efficiently catalyze the first step in the making of synthetic gasoline (not to be confused with syngas) and other energy-rich products out of carbon dioxide. The process uses a “co-catalyst” system in three steps: (1) EMIM–CO2 complex formation; (2) adsorption of EMIM–CO2 complex on reduced carbon atoms and (3)carbon monoxide formation.

 

The first step uses an ionic liquid, while graphitic carbon structures doped with other reactive atoms replaced silver to produce the final output. The carbon nanofiber catalyst exhibited negligible overpotential (0.17 V) for carbon dioxide reduction and more than an order of magnitude higher current density compared with silver under similar experimental conditions. The reduction derived from the reduced carbons rather than to electronegative nitrogen dopants. The performance came from the nanofibrillar structure and high binding energy of key intermediates to the carbon nanofiber surfaces.

 

Flexible Heating

 

 

 

 

Known for its conductivity, carbon fibers can carry very low currents on their own. When woven into larger fabrics, they can be used to reliably deliver infrared heating in applications requiring flexible heating elements and can easily sustain temperatures past 100 °C due to its physical properties. Many examples of this type of application can be seen in 'DIY' or Do it Yourself heated articles of clothing and blankets. Due to its chemical inertness, it can be used relatively safely amongst most fabrics and materials; however, shorts caused by the material folding back on itself will lead to increased heat production and can lead to fire.

 

Synthesis

 

Each carbon filament is produced from a polymer such as polyacrylonitrile (PAN), rayon, or petroleum pitch, known as a precursor. For synthetic polymers such as PAN or rayon, the precursor is first spun into filament yarns, using chemical and mechanical processes to initially align the polymer atoms in a way to enhance the final physical properties of the completed carbon fiber. Precursor compositions and mechanical processes used during spinning filament yarns may vary among manufacturers. After drawing or spinning, the polymer filament yarns are then heated to drive off non-carbon atoms (carbonization), producing the final carbon fiber. The carbon fibers filament yarns may be further treated to improve handling qualities, then wound on to bobbins.

 

 

 

 

 

Synthesis of carbon fiber frompolyacrylonitrile (PAN): 1) Polymerization ofacrylonitrile to PAN, 2) Cyclization during low temperature process, 3) High temperature oxidative treatment of carbonization (hydrogen is removed). After this, process of graphitization starts where nitrogen is removed and chains are joined into graphite planes.

 

A common method of manufacture involves heating the spun PAN filaments to approximately 300 °C in air, which breaks many of the hydrogen bonds and oxidizes the material. The oxidized PAN is then placed into a furnace having an inert atmosphere of a gas such as argon, and heated to approximately 2000 °C, which induces graphitization of the material, changing the molecular bond structure. When heated in the correct conditions, these chains bond side-to-side (ladder polymers), forming narrow graphene sheets which eventually merge to form a single, columnar filament. The result is usually 93–95% carbon. Lower-quality fiber can be manufactured using pitch or rayon as the precursor instead of PAN. The carbon can become further enhanced, as high modulus, or high strength carbon, by heat treatment processes. Carbon heated in the range of 1500–2000 °C (carbonization) exhibits the highest tensile strength (820,000 psi, 5,650 MPa or N/mm²), while carbon fiber heated from 2500 to 3000 °C (graphitizing) exhibits a highermodulus of elasticity (77,000,000 psi or 531 GPa or 531 kN/mm²).

 

Manufacturers

 

Major manufacturers of carbon fibers include Toho Tenax, Cytec Industries, EFT Fibers, Formosa Plastics, Hexcel, Mitsubishi Rayon, SGL Carbon, Toray Industries and Zoltek. Manufacturers typically make different grades of fibers for different applications. Higher modulus carbon fibers are typically more expensive.

 

Renewable fiber production research

 

Currently a number of research institutions are carrying out research to try to synthesise carbon fiber from renewable, non-fossil fuel based feedstocks. If successful this could reduce greenhouse gas emissions associated with carbon fiber manufacture as well as long term costs of production.

 

 


Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

 

aramid

Aramid

 

From Wikipedia, the free encyclopedia

 

 

 

 

Aramid fibers are a class of heat-resistant and strong synthetic fibers. They are used in aerospace and military applications, for ballistic-rated body armor fabric and ballistic composites, in bicycle tires, and as anasbestos substitute. The name is a portmanteau of "aromatic polyamide". They are fibers in which the chain molecules are highly oriented along the fiber axis, so the strength of the chemical bond can be exploited.

 

History

 

Aromatic polyamides were first introduced in commercial applications in the early 1960s, with a meta-aramid fiber produced by DuPont as HT-1 and then under the trade nameNomex. This fiber, which handles similarly to normal textile apparel fibers, is characterized by its excellent resistance to heat, as it neither melts nor ignites in normal levels of oxygen. It is used extensively in the production of protective apparel, air filtration, thermal and electrical insulation as well as a substitute for asbestos. Meta-aramid is also produced in the Netherlands and Japan by Teijin under the trade name Conex, in Korea by Toray under the trade name Arawin, in China by Yantai Tayho under the trade name New Star, by SRO Group (China) under the trade name X-Fiper, and a variant of meta-aramid in France by Kermel under the trade name Kermel.

 

Based on earlier research by Monsanto Company and Bayer, para-aramid fiber with much higher tenacity and elastic modulus was also developed in the 1960s–1970s by DuPont and Akzo Nobel, both profiting from their knowledge of rayon, polyester and nylon processing.

 

Much work was done by Stephanie Kwolek in 1961 while working at DuPont, and that company was the first to introduce a para-aramid called Kevlar in 1973. A similar fiber called Twaron with roughly the same chemical structure was introduced by Akzo in 1978. Due to earlier patents on the production process, Akzo and DuPont engaged in a patent dispute in the 1980s. Twaron is currently owned by the Teijin company (see Production).

 

Para-aramids are used in many high-tech applications, such as aerospace and military applications, for "bullet-proof" body armor fabric.

 

The Federal Trade Commission definition for aramid fiber is:

 

A manufactured fiber in which the fiber-forming substance is a long-chain synthetic polyamide in which at least 85% of the amide linkages, (−CO−NH−) are attached directly to two aromatic rings.

 

Health

 

During the 1990s, an in vitro test of aramid fibers showed they exhibited "many of the same effects on epithelial cells as did asbestos, including increased radiolabelednucleotide incorporation into DNA and induction of ODC (ornithine decarboxylase) enzyme activity", raising the possibility of carcinogenic implications. However, in 2009, it was shown that inhaled aramid fibrils are shortened and quickly cleared from the body and pose little risk.

 

Production

 

World capacity of para-aramid production was estimated at about 41,000 tonnes per year in 2002 and increases each year by 5–10%. In 2007 this means a total production capacity of around 55,000 tonnes per year.

 

Polymer preparation

 

Aramids are generally prepared by the reaction between an amine group and a carboxylic acid halide group. Simple AB homopolymers may look like

 

n NH2−Ar−COCl → −(NH−Ar−CO)n− + n HCl

 

The most well-known aramids (Kevlar, Twaron, Nomex, New Star and Teijinconex) are AABB polymers. Nomex, Teijinconex and New Star contain predominantly the meta-linkage and are poly-metaphenylene isophthalamides (MPIA). Kevlar and Twaron are both p-phenylene terephthalamides (PPTA), the simplest form of the AABB para-polyaramide. PPTA is a product of p-phenylene diamine (PPD) and terephthaloyl dichloride (TDC or TCl). Production of PPTA relies on a co-solvent with an ionic component (calcium chloride (CaCl2)) to occupy the hydrogen bonds of the amide groups, and an organic component (N-methyl pyrrolidone (NMP)) to dissolve the aromatic polymer. Prior to the invention of this process by Leo Vollbracht, who worked at the Dutch chemical firm Akzo, no practical means of dissolving the polymer was known. The use of this system led to an extended patent dispute between Akzo and DuPont.

 

Spinning

 

After production of the polymer, the aramid fiber is produced by spinning the dissolved polymer to a solid fiber from a liquid chemical blend. Polymer solvent for spinning PPTA is generally 100% anhydrous sulfuric acid (H2SO4).

 

Appearances

 

·        Fiber

 

·        Chopped fiber

 

·        Powder

 

·        Pulp

 

Other types of aramids

 

Besides meta-aramids like Nomex, other variations belong to the aramid fiber range. These are mainly of the copolyamide type, best known under the brand name Technora, as developed by Teijin and introduced in 1976. The manufacturing process of Technora reacts PPD and 3,4'-diaminodiphenylether (3,4'-ODA) with terephthaloyl chloride (TCl).This relatively simple process uses only one amide solvent, and therefore spinning can be done directly after the polymer production.
In Europe, there is a POD (poly-oxadiazole polymer) known under the brand name Arselon, which was developed in the beginning of 70s at Research and Production Association "Khimvolokno" (Moscow region).
Since 1975 Arselon based on polyphenylene-1,3,4-oxadiazole is produced at OJSC "SvetlogorskKhimvolokno" (Svetlogorsk, Belarus).

 

 

 

 

This fiber made from terephthalic acid (PTA), hydrazine-sulphate and oleum.

 

Arselon fiber can resist 250 °C and withstands short-term heat shock at 400 °C with no shrinkage or melting. LOI of Arselon - 30%.

 

 

 

 

Range of products based on Arselon:

 

·        filament yarns;

 

·        staple fiber;

 

·        milled fiber;

 

·        spun yarns;

 

·        non-woven felt Filars;

 

·        FR fabrics and ready made PPE;

 

·        bag filters for hot gas filtration

 

Aramid fiber characteristics

 

Aramids share a high degree of orientation with other fibers such as ultra-high-molecular-weight polyethylene, a characteristic that dominates their properties.

 

General

 

·        good resistance to abrasion

 

·        good resistance to organic solvents

 

·        nonconductive

 

·        no melting point

 

·        low flammability

 

·        good fabric integrity at elevated temperatures

 

·        sensitive to acids and salts

 

·        sensitive to ultraviolet radiation

 

·        prone to electrostatic charge build-up unless finished

 

Para-aramids

 

·        para-aramid fibers, such as Kevlar and Twaron, provide outstanding strength-to-weight properties

 

·        high Young's modulus

 

·        high tenacity

 

·        low creep

 

·        low elongation at break (~3.5%)

 

·        difficult to dye – usually solution-dyed

 

Uses

 

·        flame-resistant clothing (for example, military MIL-G-181188B suits).

 

·        heat-protective clothing and helmets

 

·        body armor, competing with PE-based fiber products such as Dyneema and Spectra

 

·        composite materials

 

·        asbestos replacement (e.g. brake linings)

 

·        hot air filtration fabrics

 

·        tires, newly as Sulfron (sulfur-modified Twaron)

 

·        mechanical rubber goods reinforcement

 

·        ropes and cables

 

·        wicks for fire dancing

 

·        optical fiber cable systems

 

·        sail cloth (not necessarily racing boat sails)

 

·        sporting goods

 

·        drumheads

 

·        wind instrument reeds, such as the Fibracell brand

 

·        loudspeaker diaphragms

 

·        boathull material

 

·        fiber-reinforced concrete

 

·        reinforced thermoplastic pipes

 

·        tennis strings (e.g. by Ashaway and Prince tennis companies)

 

·        hockey sticks (normally in composition with such materials as wood and carbon)

 

·        snowboards

 

·        jet engine enclosures

 

 

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

 

basalt

Basalt fiber

 

From Wikipedia, the free encyclopedia

 

 

Basalt fiber is a material made from extremely fine fibers of basalt. which is composed of the minerals plagioclase, pyroxene, and olivine. It is similar to carbon fiber and fiberglass, having better physicomechanical properties than fiberglass, but being significantly cheaper than carbon fiber. It is used as a fireproof textile in the aerospace andautomotive industries and can also be used as a composite to produce products such as camera tripods.

 

Manufacture

 

Basalt fiber is made from a single material, crushed basalt, from a carefully chosen quarry source and unlike other materials such as glass fiber, essentially no materials are added. The basalt is simply washed and then melted.

 

The manufacture of basalt fiber requires the melting of the quarried basalt rock at about 1,400 °C (2,550 °F). The molten rock is then extruded through small nozzles to produce continuous filaments of basalt fiber. There are three main manufacturing techniques, which are centrifugal-blowing, centrifugal-multiroll and die-blowing. The fibers typically have a filament diameter of between 9 and 13 µm which is far enough above the respiratory limit of 5 µm to make basalt fiber a suitable replacement for asbestos. They also have a high elastic modulus, resulting in excellent specific strength—three times that of steel.

 

Properties

 

The table refers to the continuous basalt fiber specific producer. Data from all the manufacturers are different, the difference is sometimes very large values.

 

Property

Value

Tensile strength

4.84 GPa

Elastic modulus

89 GPa

Elongation at break

3.15%

Density

2.7 g/cm³

 

Comparison:

 

Material

Density
(g/cm³)

Tensile strength
(GPa)

Specific
strength

Elastic modulus
(GPa)

Specific
modulus

Steel re-bar

7.85

0.5

0.0667

210

26.7

A-glass

2.46

3.31

1.35

69

28.0

C-glass

2.46

3.31

1.35

69

28.0

E-glass

2.60

3.45

1.33

76

29.2

S-2 glass

2.49

4.83

1.94

97

39.0

Silicon

2.16

0.206–0.412

0.0954–0.191

   

Quartz

2.2

0.3438

0.156

   

Carbon fiber (large)

1.74

3.62

2.08

228

131

Carbon fiber (medium)

1.80

5.10

2.83

241

134

Carbon fiber (small)

1.80

6.21

3.45

297

165

Kevlar K-29

1.44

3.62

2.51

41.4

28.8

Kevlar K-149

1.47

3.48

2.37

   

Polypropylene

0.91

0.27-0.65

0.297–0.714

38

41.7

Polyacrylonitrile

1.18

0.50-0.91

0.424–0.771

75

63.6

Basalt fiber

2.65

4.15–4.80

1.57–1.81

100–110

37.7–41.5

 

 

 

History

 

The first attempts to produce basalt fiber were made in the United States in 1923 by Paul Dhe who was granted U.S. Patent 1,462,446. These were further developed afterWorld War II by researchers in the USA, Europe and the Soviet Union especially for military and aerospace applications. Since declassification in 1995 basalt fibers have been used in a wider range of civilian applications.

 

Uses

 

·         Heat protection

 

·         Friction materials

 

·         High pressure vessels (e.g. tanks and gas cylinders)

 

·         Load bearing profiles

 

·         Windmill blades

 

·         Lamp posts

 

·         Ship hulls

 

·         Car bodies

 

·         Sports equipment

 

·         Concrete reinforcement (e.g. for bridges and buildings)

 

·         Speaker cones

 

·         Cavity wall ties

 

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

 

Epoxy

Epoxy

From Wikipedia, the free encyclopedia

 

 

 

 

 

 

 

Epoxy is a term used to denote both the basic components and the cured end products of epoxy resins, as well as a colloquial name for the epoxide functional group. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. Epoxy resins may be reacted (cross-linked) either with themselves through catalytic homopolymerisation, or with a wide range of co-reactants including polyfunctional amines, acids (and acid anhydrides), phenols, alcohols and thiols. These co-reactants are often referred to as hardeners or curatives, and the cross-linking reaction is commonly referred to as curing. Reaction of polyepoxides with themselves or with polyfunctional hardeners forms a thermosetting polymer, often with high mechanical properties, temperature and chemical resistance. Epoxy has a wide range of applications, including metal coatings, use in electronics / electrical components/LED, high tension electrical insulators, fiber-reinforced plastic materials and structural adhesives.

 

Epoxy resin

 

 

 

Structure of a cured epoxy glue. The triamine hardener is shown in red, the resin in black. The resin's epoxide groups have reacted with the hardener and are not present anymore. The material is highly crosslinked and contains many OH groups, which confer adhesive properties.

 

Epoxy resins are low molecular weight pre-polymers or higher molecular weight polymers which normally contain at least two epoxide groups. The epoxide group is also sometimes referred to as a glycidyl or oxirane group.

 

A wide range of epoxy resins are produced industrially. The raw materials for epoxy resin production are today largelypetroleum derived, although some plant derived sources are now becoming commercially available (e.g. plant derived glycerol used to make epichlorohydrin).

 

Epoxy resins are polymeric or semi-polymeric materials, and as such rarely exist as pure substances, since variable chain length results from the polymerisation reaction used to produce them. High purity grades can be produced for certain applications, e.g. using a distillation purification process. One downside of high purity liquid grades is their tendency to form crystalline solids due to their highly regular structure, which require melting to enable processing.

 

An important criterion for epoxy resins is the epoxide content. This is commonly expressed as the epoxy equivalent weight, which is the number of epoxide equivalents in 1 kg of resin (Eq./kg), or as the equivalent weight, which is the weight in grammes of resin containing 1 mole equivalent of epoxide (g/mol). One measure may be simply converted to another:

 

Equivalent weight (g/mol) = 1000 / epoxide number (Eq./kg)

 

The equivalent weight or epoxide number is used to calculate the amount of co-reactant (hardener) to use when curing epoxy resins. Epoxies are typically cured with stoichiometric or near-stoichiometric quantities of curative to achieve maximum physical properties.

 

As with other classes of thermoset polymer materials, blending different grades of epoxy resin, as well as use of additives, plasticizers or fillers is common to achieve the desired processing and/or final properties, or to reduce cost. Use of blending, additives and fillers is often referred to as formulating.

 

Bisphenol A epoxy resin

 

Important epoxy resins are produced from combining epichlorohydrin and bisphenol A to give bisphenol A diglycidyl ethers.

 

 

 

Structure of bisphenol-A diglycidyl ether epoxy resin: n denotes the number of polymerized subunits and is typically in the range from 0 to 25

 

Increasing the ratio of bisphenol A to epichlorohydrin during manufacture produces higher molecular weight linear polyethers with glycidyl end groups, which are semi-solid to hard crystalline materials at room temperature depending on the molecular weight achieved. As the molecular weight of the resin increases, the epoxide content reduces and the material behaves more and more like a thermoplastic. Very high molecular weight polycondensates (ca. 30 000 – 70 000 g/mol) form a class known as phenoxy resins and contain virtually no epoxide groups (since the terminal epoxy groups are insignificant compared to the total size of the molecule). These resins do however contain hydroxyl groups throughout the backbone, which may also undergo other cross-linking reactions, e.g. with aminoplasts, phenoplasts and isocyanates.

 

Bisphenol F epoxy resin

 

Bisphenol F may also undergo epoxidation in a similar fashion to bisphenol A. Compared to DGEBA, bisphenol F epoxy resins have lower viscosity and a higher mean epoxy content per gramme, which (once cured) gives them increased chemical resistance.

 

Novolac epoxy resin

 

Reaction of phenols with formaldehyde and subsequent glycidylation with epichlorohydrin produces epoxidised novolacs, such as epoxy phenol novolacs (EPN) and epoxy cresol novolacs (ECN). These are highly viscous to solid resins with typical mean epoxide functionality of around 2 to 6. The high epoxide functionality of these resins forms a highly crosslinked polymer network displaying high temperature and chemical resistance, but low flexibility.

 

Aliphatic epoxy resin

 

Aliphatic epoxy resins are typically formed by glycidylation of aliphatic alcohols or polyols. The resulting resins may be monofunctional (e.g. dodecanol glycidyl ether), difunctional (butanediol diglycidyl ether), or higher functionality (e.g. trimethylolpropane triglycidyl ether). These resins typically display low viscosity at room temperature (10-200 mPa.s) and are often referred to as reactive diluents. They are rarely used alone, but are rather employed to modify (reduce) the viscosity of other epoxy resins. This has led to the term ‘modified epoxy resin’ to denote those containing viscosity-lowering reactive diluents. A related class is cycloaliphatic epoxy resin, which contains one or more cycloaliphatic rings in the molecule (e.g. 3,4-epoxy cyclohexylmethyl-3,4-epoxy cyclohexane carboxylate). This class also displays low viscosity at room temperature, but offers significantly higher temperature resistance than the aliphatic epoxy diluents. However, reactivity is rather low compared to other classes of epoxy resin, and high temperature curing using suitable accelerators is normally required.

 

Glycidylamine epoxy resin

 

Glycidylamine epoxy resins are higher functionality epoxies which are formed when aromatic amines are reacted with epichlorohydrin. Important industrial grades are triglycidyl-p-aminophenol (functionality 3) and N,N',N,N'-tetraglycidyl-bis-(4-aminophenyl)-methan (functionality 4). The resins are low to medium viscosity at room temperature, which makes them easier to process than EPN or ECN resins. This coupled with high reactivity, plus high temperature resistance and mechanical properties of the resulting cured network makes them important materials for aerospace composite applications.

 

Curing epoxy resins

 

In general, uncured epoxy resins have only poor mechanical, chemical and heat resistance properties. However, good properties are obtained by reacting the linear epoxy resin with suitable curatives to form three-dimensional cross-linked thermoset structures. This process is commonly referred to as curing or gelation process. Curing of epoxy resins is an exothermic reaction and in some cases produces sufficient heat to cause thermal degradation if not controlled.

 

Curing may be achieved by reacting an epoxy with itself (homopolymerisation) or by forming a copolymer with polyfunctional curatives or hardeners. In principle, any molecule containing a reactive hydrogen may react with the epoxide groups of the epoxy resin. Common classes of hardeners for epoxy resins include amines, acids, acid anhydrides, phenols, alcohols and thiols. Relative reactivity (lowest first) is approximately in the order: phenol < anhydride < aromatic amine < cycloaliphatic amine < aliphatic amine < thiol.

 

Whilst some epoxy resin/ hardener combinations will cure at ambient temperature, many require heat, with temperatures up to 150 °C being common, and up to 200 °C for some specialist systems. Insufficient heat during cure will result in a network with incomplete polymerisation, and thus reduced mechanical, chemical and heat resistance. Cure temperature should typically attain the glass transition temperature (Tg) of the fully cured network in order to achieve maximum properties. Temperature is sometimes increased in a step-wise fashion to control the rate of curing and prevent excessive heat build-up from the exothermic reaction.

 

Hardeners which show only low or limited reactivity at ambient temperature, but which react with epoxy resins at elevated temperature are referred to as latent hardeners. When using latent hardeners, the epoxy resin and hardener may be mixed and stored for some time prior to use, which is advantageous for many industrial processes. Very latent hardeners enable one-component (1K) products to be produced, whereby the resin and hardener are supplied pre-mixed to the end user and only require heat to initiate curing. One-component products generally have shorter shelf-lives than standard 2-component systems, and products may require cooled storage and transport.

 

The epoxy curing reaction may be accelerated by addition of small quantities of accelerators. Tertiary amines, carboxylic acids and alcohols (especially phenols) are effective accelerators. Bisphenol A is a highly effective and widely used accelerator, but is now increasingly replaced due to health concerns with this substance.

 

Homopolymerisation

 

Epoxy resin may be reacted with itself in the presence of an anionic catalyst (a Lewis base such as tertiary amines or imidazoles) or a cationic catalyst (a Lewis acid such as a boron trifluoride complex) to form a cured network. This process is known as catalytic homopolymerisation. The resulting network contains only ether bridges, and exhibits high thermal and chemical resistance, but is brittle and often requires elevated temperature to effect curing, so finds only niche applications industrially. Epoxy homopolymerisation is often used when there is a requirement for UV curing, since cationic UV catalysts may be employed (e.g. for UV coatings).

 

Amines

 

Polyfunctional primary amines form an important class of epoxy hardeners. Primary amines undergo an addition reaction with the epoxide group to form a hydroxyl group and a secondary amine. The secondary amine can further react with an epoxide to form a tertiary amine and an additional hydroxyl group. Kinetic studies have shown the reactivity of the primary amine to be approximately double that of the secondary amine. Use of a difunctional or polyfunctional amine forms a three-dimensional cross-linked network. Aliphatic, cycloaliphatic and aromatic amines are all employed as epoxy hardeners. Amine type will alter both the processing properties (viscosity, reactivity) and the final properties (mechanical, temperature and heat resistance) of the cured copolymer network. Thus amine structure is normally selected according to the application. Reactivity is broadly in the order aliphatic amines > cycloaliphatic amines > aromatic amines. Temperature resistance generally increases in the same order, since aromatic amines form much more rigid structures than aliphatic amines. Whilst aromatic amines were once widely used as epoxy resin hardeners due to the excellent end properties they imparted, health concerns with handling these materials means that they have now largely been replaced by safer aliphatic or cycloaliphatic alternatives.

 

 

 

Structure of TETA, a typical hardener. The amine (NH2) groups react with the epoxide groups of the resin during polymerisation.

 

Anhydrides

 

Epoxy resins may be cured with cyclic anhydrides at elevated temperatures. Reaction occurs only after opening of the anhydride ring, e.g. by secondary hydroxyl groups in the epoxy resin. A possible side reaction may also occur between the epoxide and hydroxyl groups, but this may suppressed by addition of tertiary amines. The low viscosity and high latency of anhydride hardeners makes them suitable for processing systems which require addition of mineral fillers prior to curing, e.g. for high voltage electrical insulators.

 

Phenols

 

Polyphenols, such as bisphenol A or novolacs can react with epoxy resins at elevated temperatures (130-180 °C), normally in the presence of a catalyst. The resulting material has ether linkages and displays higher chemical and oxidation resistance than typically obtained by curing with amines or anhydrides. Since many novolacs are solids, this class of hardeners is often employed for powder coatings.

 

Thiols

 

Also known as mercaptans, thiols contain a sulfur which reacts very readily with the epoxide group, even at ambient or sub-ambient temperatures. Whilst the resulting network does not typically display high temperature or chemical resistance, the high reactivity of the thiol group makes it useful for applications where heated curing is not possible, or very fast cure is required e.g. for domestic DIY adhesives and chemical rock bolt anchors. Thiols have a characteristic odour, which can be detected in many two-component household adhesives.

 

History

 

Condensation of epoxides and amines was first reported and patented by Paul Schlack of Germany in 1934. The discovery of bisphenol-A-based epoxy resins is shared by Dr.Pierre Castan of Switzerland (patented 1938). Dr. Castan's work was licensed by Ciba, Ltd. of Switzerland, which went on to become one of the three major epoxy resin producers worldwide. Ciba's epoxy business was spun off and later sold in the late 1990s and is now the Advanced Materials business unit of Huntsman Corporation of the United States. In 1946. S.O. Greenlee of the United States, working for Devoe-Reynolds patented resin derived from bisphenol-A and epichlorohydrin. Devoe-Reynolds, which was active in the early days of the epoxy resin industry, was sold to Shell Chemical (now Momentive Specialty Chemicals, formerly Hexion, Resolution Polymers and others).

 

Applications

 

The applications for epoxy-based materials are extensive and include coatings, adhesives and composite materials such as those using carbon fiber and fiberglass reinforcements (although polyester, vinyl ester, and other thermosetting resins are also used for glass-reinforced plastic). The chemistry of epoxies and the range of commercially available variations allows cure polymers to be produced with a very broad range of properties. In general, epoxies are known for their excellent adhesion, chemical and heat resistance, good-to-excellent mechanical properties and very good electrical insulating properties. Many properties of epoxies can be modified (for examplesilver-filled epoxies with good electrical conductivity are available, although epoxies are typically electrically insulating). Variations offering high thermal insulation, or thermal conductivity combined with high electrical resistance for electronics applications, are available.

 

Paints and coatings

 

Two part epoxy coatings were developed for heavy duty service on metal substrates and use less energy than heat-cured powder coatings. These systems provide a tough, protective coating with excellent hardness. Some epoxy coatings are formulated as an emulsion in water, and can be cleaned up without solvents. They are often used in industrial and automotive applications since they are more heat resistant than latex-based and alkyd-based paints. Epoxy paints tend to deteriorate, known as "chalking out", due to UV exposure.

 

Polyester epoxies are used as powder coatings for washers, driers and other "white goods". Fusion Bonded Epoxy Powder Coatings (FBE) are extensively used for corrosion protection of steel pipes and fittings used in the oil and gas industry, potable water transmission pipelines (steel), and concrete reinforcing rebar. Epoxy coatings are also widely used as primers to improve the adhesion of automotive and marine paints especially on metal surfaces where corrosion (rusting) resistance is important. Metal cans and containers are often coated with epoxy to prevent rusting, especially for foods like tomatoes that are acidic. Epoxy resins are also used for decorative flooring applications such as terrazzo flooring, chip flooring, and colored aggregate flooring. Epoxies were modified in a variety of ways, Reacted with fatty acids derived from oils to yield epoxy esters, which were cured the same way as alkyds . Typical ones were L8(80% linseed, D4 (40% Dehydrated castor oil). These were often reacted with styrene to make styrenated epoxy esters, used a primers. Curing with phenolics to make drum linings, curing esters with amine resins and pre-curing epoxies with amino resins to make resistant top coats. One of the best examples was a system of using solvent free epoxies for priming ships during construction, this used a system of hot airless spray with premixing at the head. This obviated the problem of solvent retention under the film, which caused adhesion problems later on.

 

Adhesives

 

 

 

Special epoxy is strong enough to withstand the forces between asurfboard fin and the fin mount. This epoxy is waterproof and capable ofcuring underwater. The blue-coloured epoxy on the left is still undergoing curing.

 

Epoxy adhesives are a major part of the class of adhesives called "structural adhesives" or "engineering adhesives" (that includespolyurethane, acrylic, cyanoacrylate, and other chemistries.) These high-performance adhesives are used in the construction of aircraft, automobiles, bicycles, boats, golf clubs, skis, snowboards, and other applications where high strength bonds are required. Epoxy adhesives can be developed to suit almost any application. They can be used as adhesives for wood, metal, glass, stone, and some plastics. They can be made flexible or rigid, transparent or opaque/colored, fast setting or slow setting. Epoxy adhesives are better in heat and chemical resistance than other common adhesives. In general, epoxy adhesives cured with heat will be more heat- and chemical-resistant than those cured at room temperature. The strength of epoxy adhesives is degraded at temperatures above 350 °F (177 °C).

 

Some epoxies are cured by exposure to ultraviolet light. Such epoxies are commonly used in optics, fiber optics, and optoelectronics.

 

Industrial tooling and composites

 

Epoxy systems are used in industrial tooling applications to produce molds, master models, laminates, castings, fixtures, and other industrial production aids. This "plastic tooling" replaces metal, wood and other traditional materials, and generally improves the efficiency and either lowers the overall cost or shortens the lead-time for many industrial processes. Epoxies are also used in producing fiber-reinforced or composite parts. They are more expensive than polyester resins and vinyl ester resins, but usually produce stronger and more temperature-resistant composite parts.

 

Electrical systems and electronics

 

 

An epoxy encapsulated hybrid circuit on a printed circuit board.

 

 

 

The interior of a pocket calculator. The dark lump of epoxy in the center covers the processor chip

 

Epoxy resin formulations are important in the electronics industry, and are employed in motors, generators, transformers, switchgear, bushings, and insulators. Epoxy resins are excellent electrical insulators and protect electrical components from short circuiting, dust and moisture. In the electronics industry epoxy resins are the primary resin used in overmolding integrated circuits, transistors and hybrid circuits, and making printed circuit boards. The largest volume type of circuit board—an "FR-4 board"—is a sandwich of layers of glass cloth bonded into a composite by an epoxy resin. Epoxy resins are used to bond copper foil to circuit board substrates, and are a component of the solder mask on many circuit boards.

 

Flexible epoxy resins are used for potting transformers and inductors. By using vacuum impregnation on uncured epoxy, winding-to-winding, winding-to-core, and winding-to-insulator air voids are eliminated. The cured epoxy is an electrical insulator and a much better conductor of heat than air. Transformer and inductor hot spots are greatly reduced, giving the component a stable and longer life than unpotted product.

 

Epoxy resins are applied using the technology of resin dispensing.

 

Petroleum & petrochemical

 

Epoxies can be used to plug selective layers in a reservoir which are producing excessive brine. The technique is named "water shut-off treatment".

 

Consumer and marine applications

 

Epoxies are sold in hardware stores, typically as a pack containing separate resin and hardener, which must be mixed immediately before use. They are also sold in boat shops as repair resins for marine applications. Epoxies typically are not used in the outer layer of a boat because they deteriorate by exposure to UV light. They are often used during boat repair and assembly, and then over-coated with conventional or two-part polyurethane paint or marine-varnishes that provide UV protection.

 

There are two main areas of marine use. Because of the better mechanical properties relative to the more common polyester resins, epoxies are used for commercial manufacture of components where a high strength/weight ratio is required. The second area is that their strength, gap filling properties and excellent adhesion to many materials including timber have created a boom in amateur building projects including aircraft and boats.

 

Normal gelcoat formulated for use with polyester resins and vinylester resins does not adhere to epoxy surfaces, though epoxy adheres very well if applied to polyester resin surfaces. "Flocoat" that is normally used to coat the interior of polyester fibreglass yachts is also compatible with epoxies.

 

Epoxy materials tend to harden somewhat more gradually, while polyester materials tend to harden quickly, particularly if a lot of catalyst is used. The chemical reactions in both cases are exothermic. Large quantities of mix will generate their own heat and greatly speed the reaction, so it is usual to mix small amounts which can be used quickly.

 

While it is common to associate polyester resins and epoxy resins, their properties are sufficiently different that they are properly treated as distinct materials. Polyester resins are typically low strength unless used with a reinforcing material like glass fibre, are relatively brittle unless reinforced, and have low adhesion. Epoxies, by contrast, are inherently strong, somewhat flexible and have excellent adhesion. However, polyester resins are much cheaper.

 

Epoxy resins typically require a precise mix of two components which form a third chemical. Depending on the properties required, the ratio may be anything from 1:1 or over 10:1, but in every case they must be mixed exactly. The final product is then a precise thermo-setting plastic. Until they are mixed the two elements are relatively inert, although the 'hardeners' tend to be more chemically active and should be protected from the atmosphere and moisture. The rate of the reaction can be changed by using different hardeners, which may change the nature of the final product, or by controlling the temperature.

 

By contrast, polyester resins are usually made available in a 'promoted' form, such that the progress of previously-mixed resins from liquid to solid is already underway, albeit very slowly. The only variable available to the user is to change the rate of this process using a catalyst, often Methyl-Ethyl-Ketone-Peroxide (MEKP), which is very toxic. The presence of the catalyst in the final product actually detracts from the desirable properties, so that small amounts of catalyst are preferable, so long as the hardening proceeds at an acceptable pace. The rate of cure of polyesters can therefore be controlled by the amount and type of catalyst as well as by the temperature.

 

As adhesives, epoxies bond in three ways: a) Mechanically, because the bonding surfaces are roughened; b) By proximity, because the cured resins are physically so close to the bonding surfaces that they are hard to separate; c) Ionically, because the epoxy resins form ionic bonds at an atomic level with the bonding surfaces. This last is substantially the strongest of the three. By contrast, polyester resins can only bond using the first two of these, which greatly reduces their utility as adhesives and in marine repair.

 

Aerospace applications

 

In the aerospace industry, epoxy is used as a structural matrix material which is then reinforced by fiber. Typical fiber reinforcements include glass, carbon, Kevlar, and boron. Epoxies are also used as a structural glue. Materials like wood, and others that are 'low-tech' are glued with epoxy resin.

 

Biology

 

Water-soluble epoxies such as Durcupan are commonly used for embedding electron microscope samples in plastic so they may be sectioned (sliced thin) with amicrotome and then imaged. 

 

Art

 

Epoxy resin, mixed with pigment, may be used as a painting medium, by pouring layers on top of each other to form a complete picture.[11]

 

Industry

 

As of 2006, the epoxy industry amounts to more than US$5 billion in North America and about US$15 billion worldwide. The Chinese market has been growing rapidly, and accounts for more than 30% of the total worldwide market. It is made up of approximately 50–100 manufacturers of basic or commodity epoxy resins and hardeners.

 

These commodity epoxy manufacturers mentioned above typically do not sell epoxy resins in a form usable to smaller end users, so there is another group of companies that purchase epoxy raw materials from the major producers and then compounds (blends, modifies, or otherwise customizes) epoxy systems from these raw materials. These companies are known as "formulators". The majority of the epoxy systems sold are produced by these formulators and they comprise over 60% of the dollar value of the epoxy market. There are hundreds of ways that these formulators can modify epoxies—by adding mineral fillers (talc, silica, alumina, etc.), by adding flexibilizers, viscosity reducers,colorants, thickeners, accelerators, adhesion promoters, etc. These modifications are made to reduce costs, to improve performance, and to improve processing convenience. As a result, a typical formulator sells dozens or even thousands of formulations—each tailored to the requirements of a particular application or market.

 

Impacted by the global economic slump, the epoxy market size declined to $15.8 billion in 2009, almost to the level of 2005. In some regional markets it even decreased nearly 20%. The current epoxy market is experiencing positive growth as the global economy revives. With an annual growth rate of 3.5 - 4% the epoxy market is expected to reach $17.7 billion by 2012 and $21.35 billion by 2015. Higher growth rate is foreseen thereafter due to stronger demands from epoxy composite market and epoxy adhesive market.

 

Health risks

 

The primary risk associated with epoxy use is often related to the hardener component and not to the epoxy resin itself. Amine hardeners in particular are generally corrosive, but may also be classed toxic and/or carncinogenic/ mutagenic. Aromatic amines present a particular health hazard (most are known or suspected carcinogens), but their use is now restricted to specific industrial applications, and safer aliphatic or cycloaliphatic amines are commonly employed.

 

Liquid epoxy resins in their uncured state are mostly classed as irritant to the eyes and skin, as well as toxic to aquatic organisms. Solid epoxy resins are generally safer than liquid epoxy resins, and many are classified non-hazardous materials. One particular risk associated with epoxy resins is sensitization. The risk has been shown to be more pronounced in epoxy resins containing low molecular weight epoxy diluents. Exposure to epoxy resins can, over time, induce an allergic reaction. Sensitization generally occurs due to repeated exposure (e.g. through poor working hygiene and/or lack of protective equipment) over a long period of time. Allergic reaction sometimes occurs at a time which is delayed several days from the exposure. Allergic reaction is often visible in the form of dermatitis, particularly in areas where the exposure has been highest (commonly hands and forearms). Epoxy use is a main source of occupational asthma among users of plastics. Bisphenol A, which is used to manufacture a common class of epoxy resins, is a known endocrine disruptor.

 

Miscovich Emeralds Hoax

 

The presence of a modern epoxy coating on emeralds allegedly recovered from a 16th-century shipwreck was a key factor in revealing the Miscovich Emeralds Hoax.

 

 

 

 

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

 

 

 

vinylester

Vinyl ester

From Wikipedia, the free encyclopedia

 

 

Vinyl Ester, or Vinylester, is a resin produced by the esterification of an epoxy resin with an unsaturated monocarboxylic acid. The reaction product is then dissolved in a reactive solvent, such as styrene, to a 35–45 percent content by weight.

 

It can be used as an alternative to polyester and epoxy materials in matrix or composite materials, where its characteristics, strengths, and bulk cost intermediate between polyester and epoxy. Vinyl ester has lower resin viscosity (approx 200 cps) than polyester (approx 500cps) and epoxy (approx 900cps).

 

In homebuilt airplanes, the Glasair and Glastar kit planes made extensive use of vinylester fiberglass-reinforced structures. It is a common resin in the marine industry due to its increased corrosion resistance and ability to withstand water absorption. Vinyl ester resin is extensively used to manufacture FRP tanks and vessels as per BS4994. For laminating process, vinyl ester is added with ratio between methyl ethyl ketone peroxide. It has more strength and mechanical properties than polyester and less than epoxy resin.

 

 

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

 

polyester thermosetting plastic

Thermosetting polymer

From Wikipedia, the free encyclopedia

 

thermosetting resin is a prepolymer in a soft solid or viscous state that changes irreversibly into an infusible, insoluble polymer network by curing. Curing is induced by the action of heat or suitable radiation, often under high pressure. A thermosetting resin is called a thermoset.

Process

The curing process transforms the resin into a plastic or rubber by cross-linking individual chains of the polymer. The cross-linking is facilitated by energy and catalysts at chemically active sites, which may be unsaturated sites or epoxy sites, for example, linking into a rigid, three-dimensional structure. This yields molecules with a large molecular weight, resulting in a material that usually decomposes before melting. Therefore, a thermoset cannot be melted and re-shaped after it is cured. This implies that thermosets cannot be recycled for the same purpose, except as filler material.

Some methods of molding thermosets are:

·         Reactive injection moulding (used for objects such as milk bottle crates)

·         Extrusion molding (used for making pipes, threads of fabric and insulation for electrical cables)

·         Compression molding (used to shape most thermosetting plastics)

·         Spin casting (used for producing fishing lures and jigs, gaming miniatures, figurines, emblems as well as production and replacement parts)

Properties

Thermosetting plastics are generally stronger than thermoplastic materials due to the three-dimensional network of bonds (cross-linking), and are also better suited to high-temperature applications up to the decomposition temperature. However, they are more brittle.

Examples

·         Polyester fibreglass systems: sheet molding compounds and bulk molding compounds

·         Polyurethanes: insulating foams, mattresses, coatings, adhesives, car parts, print rollers, shoe soles, flooring, synthetic fibers, etc. Polyurethane polymers are formed by combining two bi- or higher functional monomers/oligomers. This common type of thermoset material has also recently shown to have transient properties and can thus be reprocessed or recycled.

·         Vulcanized rubber

·         Bakelite, a phenol-formaldehyde resin used in electrical insulators and plasticware

·         Duroplast, light but strong material, similar to Bakelite used for making car parts

·         Urea-formaldehyde foam used in plywood, particleboard and medium-density fiberboard

·         Melamine resin used on worktop surfaces

·         Diallyl-phthalate (DAP) used in high temperature and mil-spec electrical connectors and other components. Usually glass filled.

·         Epoxy resin used as the matrix component in many fiber reinforced plastics such as glass-reinforced plastic and graphite-reinforced plastic

·         Polyimides used in printed circuit boards and in body parts of modern aircraft

·         Cyanate esters or polycyanurates for electronics applications with need for dielectric properties and high glass temperature requirements in composites

·         Mold or mold runners (the black plastic part in integrated circuits or semiconductors)

·         Polyester resins

 

 

 

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

polyester

Polyester

From Wikipedia, the free encyclopedia

 

Polyester is a category of polymers that contain the ester functional group in their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in the cutin of plant cuticles, as well as synthetics through step-growth polymerization such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. This material is used very widely in clothing.

 

Depending on the chemical structure, polyester can be a thermoplastic or thermoset. There are also polyester resins cured by hardeners; however, the most common polyesters are thermoplastics.

 

Fabrics woven or knitted from polyester thread or yarn are used extensively in apparel and home furnishings, from shirts and pants to jackets and hats, bed sheets, blankets, upholstered furniture and computer mouse mats. Industrial polyester fibers, yarns and ropes are used in tyre reinforcements, fabrics for conveyor belts, safety belts, coated fabrics and plastic reinforcements with high-energy absorption. Polyester fiber is used as cushioning and insulating material in pillows, comforters and upholstery padding. Polyester fabrics are highly stain-resistant— in fact, the only class of dyes which can be used to alter the color of polyester fabric are what are known asdisperse dyes.

 

Polyester fibers are sometimes spun together with natural fibers to produce a cloth with blended properties. Cotton-polyester blends (polycotton) can be strong, wrinkle and tear-resistant, and reduce shrinking. Synthetic fibers in polyester also create materials with water, wind and environmental resistance compared to plant-derived fibers. Cons of cotton and polyester blends include being less breathable than cotton and trapping more moisture while sticking to the skin. They are also less fire resistant and can melt when ignited.

 

Polyester blends have been renamed so as to suggest their similarity or even superiority to natural fibers (for example, China silk, which is a term in the textiles industry for a 100% polyester fiber woven to resemble the sheen and durability of insect-derived silk).

 

Polyesters are also used to make bottles, films, tarpaulin, canoes, liquid crystal displays, holograms, filters, dielectric film for capacitors,film insulation for wire and insulating tapes. Polyesters are widely used as a finish on high-quality wood products such as guitars, pianosand vehicle/yacht interiors. Thixotropic properties of spray-applicable polyesters make them ideal for use on open-grain timbers, as they can quickly fill wood grain, with a high-build film thickness per coat. Cured polyesters can be sanded and polished to a high-gloss, durable finish.

 

Liquid crystalline polyesters are among the first industrially used liquid crystal polymers. They are used for their mechanical properties and heat-resistance. These traits are also important in their application as an abradable seal in jet engines.

 

 

 

Types

 

Polyesters as thermoplastics may change shape after the application of heat. While combustible at high temperatures, polyesters tend to shrink away from flames and self-extinguish upon ignition. Polyester fibers have high tenacity and E-modulus as well as low water absorption and minimal shrinkage in comparison with other industrial fibers.

 

Unsaturated polyesters (UPR) are thermosetting resins. They are used as casting materials, fiberglass laminating resins and non-metallic auto-body fillers. Fiberglass-reinforced unsaturated polyesters find wide application in bodies of yachts and as body parts of cars.

 

According to the composition of their main chain, polyesters can be:

 

Main chain
composition

Type

Examples of

Polyesters

Manufacturing methods

Aliphatic

Homopolymer

Polyglycolide or polyglycolic acid (PGA)

Polycondensation of glycolic acid

Polylactic acid (PLA)

Ring-opening polymerization of lactide

Polycaprolactone (PCL)

Ring-opening polymerization of caprolactone

Polyhydroxyalkanoate (PHA)

 

Polyhydroxybutyrate (PHB)

 

Copolymer

Polyethylene adipate (PEA)

 

Polybutylene succinate (PBS)

Polycondensation of succinic acid with 1,4-butanediol

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)

Copolymerization of 3-hydroxybutanoic acid and 3-hydroxypentanoic acid,
butyrolactone, and valerolactone (oligomeric aluminoxane as a catalyst)

Semi-aromatic

Copolymer

Polyethylene terephthalate (PET)

Polycondensation of terephthalic acid with ethylene glycol

Polybutylene terephthalate (PBT)

Polycondensation of terephthalic acid with 1,4-butanediol

Polytrimethylene terephthalate (PTT)

Polycondensation of terephthalic acid with 1,3-propanediol

Polyethylene naphthalate (PEN)

Polycondensation of at least one naphthalene dicarboxylic acid with ethylene glycol

Aromatic

Copolymer

Vectran

Polycondensation of 4-hydroxybenzoic acid and 6-hydroxynaphthalene-2-carboxylic acid

 

Increasing the aromatic parts of polyesters increases their glass transition temperature, melting temperature, thermal stability, chemical stability...

 

Polyesters can also be telechelic oligomers like the polycaprolactone diol (PCL) and the polyethylene adipate diol (PEA). They are then used as prepolymers.

 

Industry[edit]

 

Basics[edit]

 

Polyester is a synthetic polymer made of purified terephthalic acid (PTA) or its dimethyl ester dimethyl terephthalate (DMT) and monoethylene glycol (MEG). With 18% market share of all plastic materials produced, it ranges third after polyethylene (33.5%)[citation needed] and polypropylene (19.5%).

 

The main raw materials are described as follows:

 

Purified terephthalic acid (PTA) CAS-No.: 100-21-0

 

Synonym: 1,4 benzenedicarboxylic acid,
Sum formula: C6H4(COOH)2, mol. weight: 166.13

 

Dimethylterephthalate (DMT) CAS-No.: 120-61-6

 

Synonym: 1,4 benzenedicarboxylic acid dimethyl ester,
Sum formula: C6H4(COOCH3)2, mol. weight: 194.19

 

Mono-ethylene glycol (MEG) CAS No.: 107-21-1

 

Synonym: 1,2 ethanediol,
Sum formula: C2H6O2 , mol. weight: 62.07

 

To make a polymer of high molecular weight a catalyst is needed. The most common catalyst is antimony trioxide (or antimony tri-acetate):

 

Antimony trioxide (ATO) CAS-No.: 1309-64-4

 

mol. weight: 291.51,
Sum formula: Sb2O3

 

In 2008, about 10,000 tonnes Sb2O3 were used to produce around 49 million tonnes polyethylene terephthalate.[citation needed]

 

Polyester is described as follows:

 

Polyethylene terephthalate CAS-No.: 25038-59-9

 

Synonyms/abbreviations: polyester, PET, PES,
Sum formula: H-[C10H8O4]-n=60–120 OH, mol. unit weight: 192.17

 

There are several reasons for the importance of polyester:

 

·                     The relatively easy accessible raw materials PTA or DMT and MEG

 

·                     The very well understood and described simple chemical process of polyester synthesis

 

·                     The low toxicity level of all raw materials and side products during polyester production and processing

 

·                     The possibility to produce PET in a closed loop at low emissions to the environment

 

·                     The outstanding mechanical and chemical properties of polyester

 

·                     The recyclability

 

·                     The wide variety of intermediate and final products made of polyester.

 

In the following table, the estimated world polyester production is shown. Main applications are textile polyester, bottle polyester resin, film polyester mainly for packaging and specialty polyesters for engineering plastics. According to this table, the world's total polyester production might exceed 50 million tons per annum before the year 2010.

 

World polyester production by year

Product type

2002 (million tonnes/year)

2008 (million tonnes/year)

Textile-PET

20

39

Resin, bottle/A-PET

9

16

Film-PET

1.2

1.5

Special polyester

1

2.5

Total

31.2

59

 

Raw material producer[edit]

 

Polyester processing[edit]

 

After the first stage of polymer production in the melt phase, the product stream divides into two different application areas which are mainly textile applications and packaging applications. In the following table, the main applications of textile and packaging of polyester are listed.

 

Textile and packaging polyester application list (melt or pellet)

Textile

Packaging

Staple fiber (PSF)

Bottles for CSD, water, beer, juice, detergents, etc.

Filaments POY, DTY, FDY

A-PET film

Technical yarn and tire cord

Thermoforming

Non-woven and spunbond

biaxial-oriented film (BO-PET)

Mono-filament

Strapping

 

Abbreviations:

 

PSF

 

Polyester-staple fiber;

 

POY

 

Partially oriented yarn;

 

DTY

 

Draw-textured yarn;

 

FDY

 

Fully drawn yarn;

 

CSD

 

Carbonated soft drink;

 

A-PET

 

Amorphous polyester film;

 

BO-PET

 

Biaxial-oriented polyester film;

 

A comparable small market segment (much less than 1 million tonnes/year) of polyester is used to produce engineering plastics and masterbatch.

 

In order to produce the polyester melt with a high efficiency, high-output processing steps like staple fiber (50–300 tonnes/day per spinning line) or POY /FDY (up to 600 tonnes/day split into about 10 spinning machines) are meanwhile more and more vertically integrated direct processes. This means the polymer melt is directly converted into the textile fibers or filaments without the common step of pelletizing. We are talking about full vertical integration when polyester is produced at one site starting from crude oil or distillation products in the chain oil → benzene → PX → PTA → PET melt → fiber/filament or bottle-grade resin. Such integrated processes are meanwhile established in more or less interrupted processes at one production site. Eastman Chemicals were the first to introduce the idea of closing the chain from PX to PET resin with their so-called INTEGREX process. The capacity of such vertically integrated production sites is >1000 tonnes/day and can easily reach 2500 tonnes/day.

 

Besides the above-mentioned large processing units to produce staple fiber or yarns, there are ten thousands of small and very small processing plants, so that one can estimate that polyester is processed and recycled in more than 10 000 plants around the globe. This is without counting all the companies involved in the supply industry, beginning with engineering and processing machines and ending with special additives, stabilizers and colors. This is a gigantic industry complex and it is still growing by 4–8% per year, depending on the world region.

 

Synthesis[edit]

 

Synthesis of polyesters is generally achieved by a polycondensation reaction. See "condensation reactions in polymer chemistry". The general equation for the reaction of a diol with a diacid is :

 

(n+1) R(OH)2 + n R´(COOH)2 → HO[ROOCR´COO]nROH + 2n H2O

 

Azeotrope esterification[edit]

 

In this classical method, an alcohol and a carboxylic acid react to form a carboxylic ester. To assemble a polymer, the water formed by the reaction must be continually removed by azeotrope distillation.

 

Alcoholic transesterification[edit]

 

Main article: Transesterification

 

 

 

Transesterification: An alcohol-terminated oligomer and an ester-terminated oligomer condense to form an ester linkage, with loss of an alcohol. R and R' are the two oligomer chains, R'' is a sacrificial unit such as a methyl group (methanol is the byproduct of the esterification reaction).

 

Acylation (HCl method)[edit]

 

The acid begins as an acid chloride, and thus the polycondensation proceeds with emission of hydrochloric acid (HCl) instead of water. This method can be carried out in solution or as an enamel.

 

Silyl method

 

In this variant of the HCl method, the carboxylic acid chloride is converted with the trimethyl silyl ether of the alcohol component and production of trimethyl silyl chloride is obtained

 

Acetate method (esterification)[edit]

 

Silyl acetate method

 

Ring-opening polymerization[edit]

 

Aliphatic polyesters can be assembled from lactones under very mild conditions, catalyzed anionically, cationically or metallorganically. A number of catalytic methods for the copolymerization of epoxides with cyclic anhydrides have also recently been shown to provide a wide array of functionalized polyesters, both saturated and unsaturated.

 

Biodegradation[edit]

 

The futuro house was made of fibreglass-reinforced polyester plastic; polyester-polyurethane, and poly(methylmethacrylate) one of them was found to be degrading by Cyanobacteria and Archaea.[4][5]

 

Cross-linking[edit]

 

Unsaturated polyesters are thermosetting resins. They are generally copolymers prepared by polymerizing one or more diol with saturated and unsaturated dicarboxylic acids (maleic acid, fumaric acid...) or their anhydrides. The double bond of unsaturated polyesters reacts with a vinyl monomer, usually styrene, resulting in a 3-D cross-linked structure. This structure acts as a thermoset. The exothermic cross-linking reaction is initiated through a catalyst, usually an organic peroxide such as methyl ethyl ketone peroxide or benzoyl peroxide.

 

 

 

 

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Cubic GRP Tank, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Funeral Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Funeral Septic Tanks, Cubic Septic Tank, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Septic #Septic tank #Composite #Composite Manhole cover #manhole #manhole cover #GRP #GRP tank #Polyethylene #Polyethylene tank #SMC #SMC tank #Cubic modular tank #Composite tank #Storage tank #Water tank #Composite fitting

 

 

 

Phenol formaldehyde resin

Thermosetting polymer

 

From Wikipedia, the free encyclopedia

 

 

thermosetting resin is a prepolymer in a soft solid or viscous state that changes irreversibly into an infusible, insoluble polymer network by curing. Curing is induced by the action of heat or suitable radiation, often under high pressure. A thermosetting resin is called a thermoset.

 

Process

 

The curing process transforms the resin into a plastic or rubber by cross-linking individual chains of the polymer. The cross-linking is facilitated by energy and catalysts at chemically active sites, which may be unsaturated sites or epoxy sites, for example, linking into a rigid, three-dimensional structure. This yields molecules with a large molecular weight, resulting in a material that usually decomposes before melting. Therefore, a thermoset cannot be melted and re-shaped after it is cured. This implies that thermosets cannot be recycled for the same purpose, except as filler material.

 

Some methods of molding thermosets are:

 

·         Reactive injection moulding (used for objects such as milk bottle crates)

 

·         Extrusion molding (used for making pipes, threads of fabric and insulation for electrical cables)

 

·         Compression molding (used to shape most thermosetting plastics)

 

·         Spin casting (used for producing fishing lures and jigs, gaming miniatures, figurines, emblems as well as production and replacement parts)

 

Properties

 

Thermosetting plastics are generally stronger than thermoplastic materials due to the three-dimensional network of bonds (cross-linking), and are also better suited to high-temperature applications up to the decomposition temperature. However, they are more brittle.

 

Examples

 

·         Polyester fibreglass systems: sheet molding compounds and bulk molding compounds

 

·         Polyurethanes: insulating foams, mattresses, coatings, adhesives, car parts, print rollers, shoe soles, flooring, synthetic fibers, etc. Polyurethane polymers are formed by combining two bi- or higher functional monomers/oligomers. This common type of thermoset material has also recently shown to have transient properties and can thus be reprocessed or recycled.

 

·         Vulcanized rubber

 

·         Bakelite, a phenol-formaldehyde resin used in electrical insulators and plasticware

 

·         Duroplast, light but strong material, similar to Bakelite used for making car parts

 

·         Urea-formaldehyde foam used in plywood, particleboard and medium-density fiberboard

 

·         Melamine resin used on worktop surfaces

 

·         Diallyl-phthalate (DAP) used in high temperature and mil-spec electrical connectors and other components. Usually glass filled.

 

·         Epoxy resin used as the matrix component in many fiber reinforced plastics such as glass-reinforced plastic and graphite-reinforced plastic

 

·         Polyimides used in printed circuit boards and in body parts of modern aircraft

 

·         Cyanate esters or polycyanurates for electronics applications with need for dielectric properties and high glass temperature requirements in composites

 

·         Mold or mold runners (the black plastic part in integrated circuits or semiconductors)

 

·         Polyester resins

 

 

 

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

GRP sectional Tank

GRP sectional Tank

 

We are recognized as one of the market leaders in water tanks industry in the Iran. Our expanding customer base embraces many major clients including government establishments, local authorities and the construction industry, from high rise flats to Royal places, our services remains excellent. Our technicians and engineers are fully trained in erection of GRP sectional water tanks. We offer GRP sectional water tanks made of hot press moulding panels are moulded from a sheet moulding compound having low shrink characteristics and excellent physical properties, the sheet moulding compound contains E – glass Fiber, fillers and high grade Isophthalic polyester resin. The GRP sectional water tanks system is designed for building tanks up to 3 meter high using 1 meter square panels; GRP sectional tanks find application whenever access to the tank location is restricted or when large capacity are required.

 

 

We offer both insulated and non – insulated GRP sectional water tanks

 

GRP sectional tanks comprise externally bolted panels and a metal bracing system depending upon size.

 

Manhole access with cover is used in the top panels of the tank.

 

·         Marine grad A4/316 SS tie rods used as internal bracings.

 

·         Hot dip galvanized steel fasteners and metal work used external side of the tanks.

 

·         External and internal GRP ladders.

 

·         High performance EPDM gaskets used in between flanges of panels for ease of installation and no risk of leakage due to creep or age hardening of sealant.

 

·         Internal PVC pipes support the cover panels.

 

·         Sump panel to facilitate draining.

 

·         Comprehensive range of accessories are supplied along with tank.

 

 

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

 

WATER TANKS: Fiberglass (GRP) Water Tanks

Fiberglass Water Tanks are a robust and reliable storage option for potable water, non-potable water, waste water and more. Tanks are designed standard in configurations that include vertical tanks, flat top tanks, horizontal tanks, and underground storage tanks. Depending on your location and storage requirements, tanks may include additional fittings, designs or coatings to accommodate your specific liquids.

Fiberglass Tank Design

All fiberglass tanks feature a robust outer shell that is naturally resistant to UV exposure, weather elements, and other outdoor elements. In order to match the liquid being stored in the tank, interior resins are molded and coated with the required fabrics.

 

We make fiberglass portable and industrial water tanks with internationally quality standards, which are manufactured in our own city Shiraz. They are strong, durable and can resist any bacterial algae and fungus to provide clean drinking water. Our tanks are made of best quality food grade polyester resin.

 

 

 

 Features Of Fiberglass Tanks :

 

Diemensions For Fiberglass Horizontal Cylindrical Tanks:

 

·         Our cylindrical horizontal water tank capacity ranges from 200 US gallon up to 15000 US gallon.

 

·         Our fiberglass (GRP) water tanks are manufactured using the best quality orthophathalic polyester resin suitable for using with potable water and

 

·         Our fiberglass (GRP) water tanks are manufactured using best quality fiberglass reinforcements conforming

 

·         The water tanks are manufactured under strictly hygienic conditions and are designed to ensure that there is no accumulation of dirt, dust and algae formation on the contact skin of the tank with water.

 

·         Matin Company makes tanks are not affected by ultra violet rays and have excellent weathering properties.

 

·         Easy maintenance.

 

·         Matin Company makes tanks are fully guaranteed for 10 years against all manufacturing defects.

·          

CODE

CAPACITY

LENGTH

WIDTH

HEIGHT

TT-GRP01WT

15000 USG

1250 CM

240 CM

255 CM

TT-GRP02WT

10000 USG

1012 CM.

240 CM.

255 CM

TT-GRP03WT

5000 USG

505 CM.

240 CM.

255 CM.

TT-GRP04WT

3000 USG

490 CM

190 CM.

210 CM.

TT-GRP05WT

2000 USG

380 CM

180 CM

190 CM

TT-GRP06WT

1500 USG

270 CM

180 CM

190 CM

TT-GRP07WT

1000 USG

190 CM

180 CM

190 CM

TT-GRP08WT

800 USG

210 CM

150 CM

160 CM

TT-GRP09WT

600 USG

165 CM

150 CM

157 CM

TT-GRP010WT

400 USG

145 CM

127 CM

117 CM

TT-GRP011WT

250 USG

132 CM

101 CM

115 CM

TT-GRP012WT

200 USG

117 CM

100 CM

102 CM

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

Plastic Septic Tank

Plastic Septic Tank

 

Plastic septic tanks are constructed from polyethylene resins as a great alternative to concrete because they last just as long, take half the effort to install, and lower your overall septic tank cost. Today's technology and engineering involved with making a plastic septic tank, has created a product built to last. 

Plastic Septic Tanks are designed for both residential and commercial use. Outhouses, trailers, rv parks, homes, cottages, portable construction buildings, whatever the job, plastic septic tanks are there. 

Waste Water Systems? no problem... plastic septic tanks do it all!

Plastic Septic Tanks may NOT be used for storage of chemicals intended for human consumption, if needed see the below ground food grade water cistern tanks.

Buy a plastic septic tank today!

 

 

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

Plastic Storage Tank

Plastic Storage Tanks

 

Plastic Storage Tanks and Polyethylene Storage Tanks are highly versatile tanks and are most frequently used for the bulk storage of:

 

  •  Water
  •  Liquid Fertilizer
  •  Waste Vegetable Oil
  •  Agricultural Chemicals
  •  Industrial Chemicals
  •  Reverse Osmosis Systems
  •  Car Wash Tanks

 

Plastic Bulk Storage Tanks & Poly Bulk Storage Tanks feature tie-down slots, centered & offset self-vented, slosh-proof lids. Vertical Plastic and Poly Storage Tanks can be used as clear plastic water tanks featuring translucent tank walls for level viewing and sidewall gallon indicators.

 

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

Sheet moulding compound (SMC)

Sheet moulding compound

From Wikipedia, the free encyclopedia

 

Sheet moulding compound (SMC) or sheet moulding composite is a ready to mould glass-fibre reinforced polyester material primarily used in compression moulding. The sheet is provided in rolls weighing up to 1000 kg.

SMC is both a process and reinforced composite material. This is manufactured by dispersing long strands (usually >1”) of chopped fiber (commonly glass fibers or carbon fibers on a bath of resin (commonly polyester resinvinylester resin or epoxy resin). The longer fibers in SMC result in better strength properties than standard bulk moulding compound (BMC) products. Typical applications include demanding electrical applications, corrosion resistant needs, structural components at low cost, automotive, and transit.

Process

Paste reservoir dispenses a measured amount of specified resin paste onto a plastic carrier film. This carrier film passes underneath a chopper which cuts the fibers onto the surface. Once these have drifted through the depth of resin paste, another sheet is added on top which sandwiches the glass. The sheets are compacted and then enter onto a take-up roll, which is used to store the product whilst it matures. The carrier film is then later removed and the material is cut into charges. Depending on what shape is required determines the shape of the charge and steel die which it is then added to. Heat and pressure act on the charge and once fully cured, this is then removed from the mould as the finished product.

Advantages

Compared to similar methods, SMC benefits from a very high volume production ability, excellent part reproducibility, it is cost effective as low labor requirements per production level is very good and industry scrap is reduced substantially. Weight reduction, due to lower dimensional requirements and because of the ability to consolidate many parts into one, is also advantageous. The level of flexibility also exceeds many counterpart processes.

Physical properties (properties vary depending upon fiber and resin types)

·         Impact Strength: 8–13 ft·lbf/in

·         Flex Strength: 18-34 KPSI

·         Flex Mod: 1.5-2.1 KPSI

·         Tensile Strength: 8-18 KPSI

·         Compressive Strength: 24-32 KPSI

·         HDT @ 264 PSI: >500°F

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

Polyester resin

Polyester resin

 

Polyester resins are unsaturated synthetic resins formed by the reaction of dibasic organic acids and polyhydric alcohols. Maleic Anhydride is a commonly used raw material with diacid functionality. Polyester resins are used in sheet moulding compound, bulk moulding compound and the toner of laser printers. Wall panels fabricated from polyester resins reinforced with fiberglass — so-called fiberglass reinforced plastic (FRP) — are typically used in restaurants, kitchens, restrooms and other areas that require washable low-maintenance walls.

 

Unsaturated polyesters are condensation polymers formed by the reaction of polyols (also known as polyhydric alcohols), organic compounds with multiple alcohol or hydroxy functional groups, with saturated or unsaturated dibasic acids. Typical polyols used are glycols such as ethylene glycol; acids used are phthalic acid and maleic acid. Water, a by-product of esterification reactions, is continuously removed, driving the reaction to completion. The use of unsaturated polyesters and additives such as styrene lowers the viscosity of the resin. The initially liquid resin is converted to a solid by cross-linking chains. This is done by creating free radicals at unsaturated bonds, which propagate in achain reaction to other unsaturated bonds in adjacent molecules, linking them in the process. The initial free radicals are induced by adding a compound that easily decomposes into free radicals. This compound is usually and incorrectly known as the catalyst. Substances used are generally organic peroxides such as benzoyl peroxide ormethyl ethyl ketone peroxide.

 

Polyester resins are thermosetting and, as with other resins, cure exothermically. The use of excessive catalyst can, therefore, cause charring or even ignition during the curing process. Excessive catalyst may also cause the product to fracture or form a rubbery material.

 

Bio degradation

 

Lichens have been shown to deteriorate polyester resins, as can be seen in archaeological sites in the Roman city of Baelo Claudia Spain.

 

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

GRP Tank

GRP Tanks

GRP Vessels and Tanks are used in multiple applications, requiring a strong, corrosion resistant environment. A typical storage tank made of GRP has an inlet, an outlet, a vent, an access port, a drain, and an overflow nozzle. However, there are other features that can be included in the tank. Ladders on the outside allow for easy access to the roof for loading. The vessel must be designed to withstand the load of someone standing on these ladders, and even withstand a person standing on the roof. Sloped bottoms allow for easier draining. Level gauges allow someone to accurately read the liquid level in the tank. The vessel must be resistant to the corrosive nature of the fluid it contains. Typically, these vessels have a secondary containment structure, in case the vessel bursts.

 

 

 


 

Other related Links:

  - Details of products

  - Details of Composite tanks products

  - Details of Septic tanks products

  - Details of Polyethylene tanks products

  - Details of SMC tanks products

  - Details of GRP tanks products

 

  - Details of projects

  - Details of Composite tanks projects

  - Details of Septic tanks projects

  - Details of Polyethylene tanks projects

  - Details of SMC tanks projects

  - Details of GRP tanks projects

  - Details of Composite covers products

  - Details of Manhole covers products

  - Details of Composite Manhole Covers / Composite Covers 

  - Details of Composite manhole cover, 360*830 mm 

  - Details of Composite manhole cover, new 265 mm products

  - Details of Composite manhole cover, 600 mm products

  - Details of Composite manhole cover, 265 mm products

  - Details of Composite manhole cover, 345 mm products

 - Details of Septic tanks Gallery

  - Details of Polyethylene tanks Gallery

  - Details of SMC tanks Gallery

  - Details of GRP tanks Gallery

 

  - Details of Composite tanks Gallery

 

  - Details of projects Gallery

 

 


Matin Technical Design Company: Design, Manufactur and Sale Composite Covers in different Sizes, Composite Manhole Cover, Round Covers, Square Covers, Composite Tank, FRP Tanks, Grp Tank, Square GRP Tank, Cubic modular tanks, Cylindrical GRP Tank, GRP Septic Tank, Composite GRP Septic Tank, Septic Tanks, Sewage Septic tank, Underground Septic tank, Polyethylene septic tank, Sheet Moulding Compound ( SMC tank ), Water tank, Storage tank, Underground Septic Tanks, Square Septic Tank, fat retention tanks, Polyethylene Tank, GRVE Tank, Fiberglass Composite Cover, Fiberglass Tanks, Fittings, Composite fitting, GRP composite fitting, FRP composite fittings, Manholes, GRP Manhole,


 

Tags:

#Matin Technical Design Company #Design #Manufactur #Sale #Composite Covers #different Sizes #Composite Manhole Cover #Round Covers #Square Covers #Composite Tank #FRP Tanks #Grp Tank #Square GRP Tank #Cylindrical GRP Tank #GRP Septic Tank #Composite GRP Septic Tank #Septic Tanks #Sewage Septic tank #Underground Septic tank #Polyethylene septic tank #Sheet Moulding Compound #SMC tank #Water tank #Storage tank #Underground Septic Tanks #Square Septic Tank #Polyethylene Tank #GRVE Tank #Fiberglass Composite Cover #Fiberglass Tanks #Fittings #Composite fitting #GRP composite fitting #FRP composite fittings #Manholes #GRP Manhole #Iran #Middle-East #Nano Composite #fat retention tanks #resin #plastic #polymer #Composite #polyester

septic tank

Our Customer